1-3 机器学习基础

机器学习基础( Basic Recipe for Machine Learning

我们训练的目的是找到低偏差、低方差的模型。

首先要保证的是低偏差,这是最低标准,反复尝试,直到可以拟合数据为止,至少能够拟合训练集。

偏差较高时可以考虑采取的方法:

  用规模更大的网络

  延长训练时间

一旦偏差降低到可以接受的数值,检查一下方差有没有问题,如果方差较高,可以考虑采取的方法:

  采用更多的数据

  使用正则化

不断重复尝试,直到找到一个低偏差,低方差的框架,这时你就成功了。

有两点需要注意:

第一点,高偏差和高方差是两种不同的情况,如果算法存在高偏差问题,准备更多训练数据其实也没什么用处。

第二点,降低一方不影响另一方:

通常构建一个更大的网络便可以在不影响方差的同时减少偏差。

采用更多数据通常可以在不过多影响偏差的同时减少方差。

转载于:https://www.cnblogs.com/xiaojianliu/articles/9554967.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值