### **DeepSeek:中国自研AGI大模型的深度解析**
---
#### **1. 技术背景与研发理念**
DeepSeek由国内顶尖AI科学家团队领衔,核心技术成员来自清华大学、北京大学及国际顶级AI实验室,团队在NLP、分布式训练、模型压缩等领域发表顶会论文超200篇。研发理念聚焦三个核心:
- **高效性**:通过模型架构创新(如MoE)实现“小参数量,大性能”。
- **可控性**:内置可解释性模块,支持推理过程追溯与规则干预。
- **开放性**:全链路开源,涵盖预训练数据配方、模型架构代码及微调工具链。
---
#### **2. 模型架构与技术细节**
##### **2.1 混合专家系统(MoE)**
- **结构设计**:DeepSeek-R1采用“16 Experts + 2 Activated”的动态路由机制,每个专家为FFN子网络,门控网络基于输入token的语义特征选择最优专家组合。
- **性能优势**:在相同计算资源下,MoE架构相比传统Transformer实现:
- **训练速度提升**:吞吐量提高3.2倍(数据来源:128xA100集群测试)。
- **显存占用降低**:推理阶段显存需求减少42%(对比同性能密集模型)。
- **开源实现**:公开的DeepSeek-MoE-16x1.3B模型支持动态专家路由策略自定义。
##### **2.2 预训练与数据工程**
- **数据规模**:预训练语料覆盖1.2万亿token,包括:
- **多语言混合