【牛客网】JZ47 礼物的最大价值

16 篇文章 0 订阅
文章介绍了如何使用动态规划解决一个从左上角到右下角的网格中获取最大价值的问题。通过初始化二维dp数组并进行状态转移,计算每个位置的最大值,最终得到答案。此外,还提供了一种直接修改原数组的方法来优化空间复杂度。
摘要由CSDN通过智能技术生成

题目链接:JZ47 礼物的最大价值
题目描述:
在这里插入图片描述
比较常规的动态规划题目,练练手,这题目从左上角走到右下角,用一个二维dp数组表示从(0,0)走到(n,m)获得的最大值,状态转移很容易得出dp[i][j] = max(dp[i-1][j], dp[i][j-1]) + grid[i][j],注意dp数组的初始化,最上面一行和最左边一列。
代码:

package main

import _"fmt"
/**
 * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
 *
 *
 * @param grid int整型二维数组
 * @return int整型
 */
func maxValue(grid [][]int) int {
	n, m := len(grid), len(grid[0])
	dp := make([][]int, n)
	for i := 0; i < n; i++ {
		dp[i] = make([]int, m)
	}
	dp[0][0] = grid[0][0]
	for i := 1; i < n; i++ {
		dp[i][0] = dp[i-1][0] + grid[i][0]
	}
	for j := 1; j < m; j++ {
		dp[0][j] = dp[0][j-1] + grid[0][j]
	}
	for i := 1; i < n; i++ {
		for j := 1; j < m; j++ {
			dp[i][j] = max(dp[i-1][j], dp[i][j-1]) + grid[i][j]
		}
	}
	return dp[n-1][m-1]
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

也可以直接利用原来的数组进行修改,因为最终都是从左上走到右下:

package main

import _"fmt"
/**
 * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
 *
 *
 * @param grid int整型二维数组
 * @return int整型
 */
func maxValue(grid [][]int) int {
	n, m := len(grid), len(grid[0])

	for i := 1; i < n; i++ {
		grid[i][0] += grid[i-1][0]
	}
	for j := 1; j < m; j++ {
		grid[0][j] += grid[0][j-1]
	}
	for i := 1; i < n; i++ {
		for j := 1; j < m; j++ {
			grid[i][j] += max(grid[i-1][j], grid[i][j-1])
		}
	}
	return grid[n-1][m-1]
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

童话ing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值