题目链接:JZ47 礼物的最大价值
题目描述:

比较常规的动态规划题目,练练手,这题目从左上角走到右下角,用一个二维dp数组表示从(0,0)走到(n,m)获得的最大值,状态转移很容易得出dp[i][j] = max(dp[i-1][j], dp[i][j-1]) + grid[i][j],注意dp数组的初始化,最上面一行和最左边一列。
代码:
package main
import _"fmt"
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
*
* @param grid int整型二维数组
* @return int整型
*/
func maxValue(grid [][]int) int {
n, m := len(grid), len(grid[0])
dp := make([][]int, n)
for i := 0; i < n; i++ {
dp[i] = make([]int, m)
}
dp[0][0] = grid[0][0]
for i := 1; i < n; i++ {
dp[i][0] = dp[i-1][0] + grid[i][0]
}
for j := 1; j < m; j++ {
dp[0][j] = dp[0][j-1] + grid[0][j]
}
for i := 1; i < n; i++ {
for j := 1; j < m; j++ {
dp[i][j] = max(dp[i-1][j], dp[i][j-1]) + grid[i][j]
}
}
return dp[n-1][m-1]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
也可以直接利用原来的数组进行修改,因为最终都是从左上走到右下:
package main
import _"fmt"
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
*
* @param grid int整型二维数组
* @return int整型
*/
func maxValue(grid [][]int) int {
n, m := len(grid), len(grid[0])
for i := 1; i < n; i++ {
grid[i][0] += grid[i-1][0]
}
for j := 1; j < m; j++ {
grid[0][j] += grid[0][j-1]
}
for i := 1; i < n; i++ {
for j := 1; j < m; j++ {
grid[i][j] += max(grid[i-1][j], grid[i][j-1])
}
}
return grid[n-1][m-1]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}

文章介绍了如何使用动态规划解决一个从左上角到右下角的网格中获取最大价值的问题。通过初始化二维dp数组并进行状态转移,计算每个位置的最大值,最终得到答案。此外,还提供了一种直接修改原数组的方法来优化空间复杂度。
495

被折叠的 条评论
为什么被折叠?



