蓝桥杯动态规划题目练习

1. 地宫取宝

题目描述

X  国王有一个地宫宝库。是  n  x  m  个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。

地宫的入口在左上角,出口在右下角。

小明被带到地宫的入口,国王要求他只能向右或向下行走。

走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。

当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。

请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。

输入

输入一行3个整数,用空格分开:n  m  k  (1< =n,m< =50,  1< =k< =12) 

接下来有  n  行数据,每行有  m  个整数  Ci  (0< =Ci< =12)代表这个格子上的宝物的价值 

输出

要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。

样例输入

2 3 2
1 2 3
2 1 5

样例输出

14

我看的一个链接:(153条消息) 每日一题 地宫取宝(第五届蓝桥杯省赛C++A/B/C组)_撒浪嘿呦x的博客-CSDN博客

这个博主写的特别清楚!!

我把它的代码改成了python:

代码:

n,m,k=map(int,input().split())
a=[]
mod=1000000007
for i in range(n):
     l=list(map(int,input().split()))
     for j in range(m):
          l[j]=l[j]+1
     a.append(l)

dp=[[[[0]*15 for i in range(15)] for j in range(51)] for kk in range(51)]
#边界条件赋值
for i in range(0,13):
     dp[n][m][k][i]=1
     if a[n-1][m-1]>i:
          dp[n][m][k-1][i]=1


#####
for i in range(n,0,-1):
     for j in range(m,0,-1):
          for t in range(k,-1,-1):
               for mx in range(13,-1,-1):
                    if i==n and j==m and (t==k or t==k-1):
                         continue
                    if a[i-1][j-1]>mx:
                         dp[i][j][t][mx]=(dp[i][j+1][t+1][a[i-1][j-1]]+dp[i+1][j][t+1][a[i-1][j-1]]+dp[i][j+1][t][mx]+dp[i+1][j][t][mx])%mod
                    else:
                         dp[i][j][t][mx]=(dp[i][j+1][t][mx]+dp[i+1][j][t][mx])%mod
                    

          
print(dp[1][1][0][0])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值