P2261 [CQOI2007]余数求和 - 数论分块

P2261 [CQOI2007]余数求和

https://www.luogu.org/problemnew/show/P2261

思路:

的值是成块状分布的,被称为数论分块。以为例,令=1,则第一个块所代表的值为,则第一个块的右端,然后下一个块的左端,以此类推,最终这些块共有种取值,可以在的时间内算出。(证明什么的,太麻烦就不证了 。。。 
所以 其中每一块相当于等差数列求值。

注意: 
1.两个int相乘可能爆long long。 
2.除法放在后面除,否则有较大精度误差。

AC Code:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
int main(){
ll n,k;scanf("%lld%lld",&n,&k);
ll ans=n*k;//两个int相乘可能爆longlong
for(ll l=1,r;l<=n;l=r+1){
r=(k/l)?min((k/(k/l)),n):n;
ans-=(k/l)*(l+r)*(r-l+1)/2;//除法放最后除 减少精度误差
}
printf("%lld",ans);
return 0;
}

 

转载于:https://www.cnblogs.com/Loi-Brilliant/p/9536941.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值