P2261 [CQOI2007]余数求和
https://www.luogu.org/problemnew/show/P2261
思路:
而的值是成块状分布的,被称为数论分块。以为例,令=1,则第一个块所代表的值为,则第一个块的右端,然后下一个块的左端,以此类推,最终这些块共有种取值,可以在的时间内算出。(证明什么的,太麻烦就不证了 。。。
所以 其中每一块相当于等差数列求值。
注意:
1.两个int相乘可能爆long long。
2.除法放在后面除,否则有较大精度误差。
AC Code:
#include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; typedef long long ll; int main(){ ll n,k;scanf("%lld%lld",&n,&k); ll ans=n*k;//两个int相乘可能爆longlong for(ll l=1,r;l<=n;l=r+1){ r=(k/l)?min((k/(k/l)),n):n; ans-=(k/l)*(l+r)*(r-l+1)/2;//除法放最后除 减少精度误差 } printf("%lld",ans); return 0; }