【转】素数相关算法总结

定义:除了1和其本身,没有其他约数的数。
测试:用n分别试除2到sqrt(n)的数,如果中间有一个能整除,即

为合数,否则即为素数

bool is_prime(int n)//判断n是否为素数,是素数返回1
{
    int i;
    bool flag = 1;
    for(i = 2; i <= sqrt(n); i++)
    {
        if(n % i == 0)
        {
            flag = 0;
            break;
        }
    }
    return flag;
}

小范围内筛素数(数据不太大):

#define Max 1000
int Prime[500];
int q;
void get_prime()
{
    q = -1;
    Prime[++q] = 2;
    Prime[1] = 3;
    int i;
    for(i = 5; i <= Max; i++)
    {
        for(j = 0; Prime[j]*Prime[j] <= i &&i%Prime[j] != 0; j++);
        if(Prime[j]*Prime[j] > i)Prime[++q] = i;
    }
}

大范围内筛素数的普通筛法(很慢):

#define Max 1000000
int Prime[500000];
bool IsPrime[Max] = {1};
int q;
void get_prime()
{
    q = -1;
    int i,j;
    for(i = 2; i*i < Max; i++)
    {
        if(IsPrime[i] == 1)
        {
            for(j = i+i; j < Max; j += i)
            {
                IsPrime[j] = 0;
            }
        }
    }
    for(i = 2; i < Max; i++)
    {
        if(IsPrime[i] == 1)
            Prime[++q] = i;
    }
}

大范围内素数的线性筛法(比普通筛法更快)

#define Max 1000000
int Prime[500000];
bool IsPrime[Max] = {1};
int q;
void get_prime()
{
    q = -1;
    int i,j;
    for(i = 2; i < Max; i++)
    {
        if(IsPrime[i] == 1)
            Prime[++q] = i;
        for(j = 0; j <= q && Prime[j] * i < Max; j++)
        {
            IsPrime[Prime[j] * i] = 0;
            if(i % Prime[j] == 0)break;
        }
    }
}

求某一区间(a,b)内的素数

有时候我们碰到的问题是要求求出a b间的素数,而a又比较大,

这种情况下就可以用这种方法实现(a>2)
注意:要先通过以上几种方法求出2到sqrt(a的最大取值)范围内

的素数存入Prime[].

int prime[500000];
bool isprime[1000000];
int qt;
void get_prime1(int a,int b)
{
    int i,j,k;
    for(i = 0; i <= b - a; i++)
    isprime[i] = 1;
    for(i = 0; Prime[i]*Prime[i] <= b && i <= q;i++){
            k = a/Prime[i];
            if (k*Prime[i] < a) k++;
            if (k <= 1) k++;
            while(k*Prime[i] <= b){
                isprime[k*Prime[i] - a] = 0;
                k++;
            }
    }
    qt = -1;
    for(i = 0; i <= b - a; i++)
    {
        if(isprime[i] == 1)
        prime[++qt] = i + a;
    }
}


阅读更多
文章标签: 算法 qt 测试
个人分类: ACM
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭