Caffe中实现LSTM网络的思路以及LSTM网络层的接口使用方法。 本文描述了论文《Long-term recurrent convolutional networks fo

本文内容: 本文描述了Caffe中实现LSTM网络的思路以及LSTM网络层的接口使用方法。本文描述了论文《Long-term recurrent convolutional networks for visual recognition and description》的算法实验本文不做LSTM...

2017-09-07 21:52:25

阅读数:1554

评论数:0

LSTM原理图解析及入门学习

原文地址:http://blog.csdn.net/hjimce/article/details/51234311 作者:hjimce  一、相关理论     本篇博文主要讲解LSTM、GRU的前向传导过程;因为我觉得反向求导,只要你根据公式按步骤求偏导数,那么只要学会复合函数的...

2017-08-25 10:13:52

阅读数:1259

评论数:0

Batch Normalization反方向传播求导

作者给出的批标准化的算法如下: 算法中的ε是一个常量,为了保证数值的稳定性 反向传播求梯度: 因为: 所以: 因为: 所以: 因为: 和 所以: 所以: 对于BN变换是可微分的,随...

2017-08-04 10:48:56

阅读数:1090

评论数:1

我理解的-随机失活dropout的意义

关于Dropout,文章中没有给出任何数学解释,Hintion的直观解释和理由如下:   1. 由于每次用输入网络的样本进行权值更新时,隐含节点都是以一定概率随机出现,因此不能保证每2个隐含节点每次都同时出现,这样权值的更新不再依赖于有固定关系隐含节点的共同作用,阻止了某些特征仅仅在其它特定...

2017-08-04 10:08:05

阅读数:1417

评论数:0

Batch Normalization 的原理解读

1:motivation 作者认为:网络训练过程中参数不断改变导致后续每一层输入的分布也发生变化,而学习的过程又要使每一层适应输 入的分布,因此我们不得不降低学习率、小心地初始化。作者将分布发生变化称之为 internal covariate shift。 对于深度学习这种包含很多隐层的网...

2017-08-01 16:51:53

阅读数:163

评论数:0

YOLO_V2的region_layer LOSS损失计算源码解读

region_layer.c box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h, int stride) { box b; b.x = (i + x[in...

2017-07-28 10:44:04

阅读数:1440

评论数:1

在神经网络中weight decay、momentum、batch normalization各自意义

一、weight decay(权值衰减)的使用目的是防止过拟合。在损失函数中,weight decay是放在正则项(regularization)前面的一个系数,正则项一般指示模型的复杂度,所以weight decay的作用是调节模型复杂度对损失函数的影响,若weight decay很大,则复杂的...

2017-07-26 10:43:07

阅读数:926

评论数:0

caffe深度学习调参笔记+caffe训练时的问题+dropout/batch Normalization

一、深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1、学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间。步长的选择比较麻烦。步长越小,越容易得到局部最优化(到了比较大的山谷,就出不去了),而大了会全局最优 一般来说,前1000步,很大,0...

2017-07-20 10:57:36

阅读数:5105

评论数:1

深度网络中softmax_loss、Smooth L1 loss计算以及反向传播推导

传统欧式距离损失函数如下式所示:                          (f1)   它在 Logistic Regression 里其到的作用是讲线性预测值转化为类别概率:假设 (f2) 是第i 个类别的线性预测结果,带入Softmax 的结果其实就是先对每一个  取 exp...

2017-07-20 10:18:34

阅读数:2396

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭