Dropout解析及个人总结

Dropout全解析 这篇教程是翻译Paolo Galeone写的Dropout分析教程,作者已经授权翻译,这是原文。 过拟合一直是深度神经网络(DNN)所要面临的一个问题:模型只是在训练数据上学习分类,使其适应训练样本,而不是去学习一个能够对通用数据进行分类的完全决策边界。这...

2017-09-15 22:42:33

阅读数:1589

评论数:0

Caffe中实现LSTM网络的思路以及LSTM网络层的接口使用方法。 本文描述了论文《Long-term recurrent convolutional networks fo

本文内容: 本文描述了Caffe中实现LSTM网络的思路以及LSTM网络层的接口使用方法。本文描述了论文《Long-term recurrent convolutional networks for visual recognition and description》的算法实验本文不做LSTM...

2017-09-07 21:52:25

阅读数:1640

评论数:0

决策树的python代码

决策树学习算法包含特征选择、决策树的生成与剪枝过程。决策树的学习算法一般是递归地选择最优特征,并用最优特征对数据集进行分割。由于决策树表示条件概率分布,所以高度不同的决策树对应不同复杂度的概率模型。最优决策树的生成是个NP问题,能实现的生成算法都是局部最优的,剪枝则是既定决策树下的全局最优。 ...

2017-09-07 10:50:49

阅读数:215

评论数:0

机器学习中正则化项L1和L2的绘图+理解

正则化(Regularization) 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数。 L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指...

2017-09-05 15:59:16

阅读数:139

评论数:0

用于进程间通讯(IPC)的不同技术

1. # 管道( pipe ):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。 # 有名管道 (named pipe) : 有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。 # 信号量( semophor...

2017-09-01 15:27:48

阅读数:130

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭