1构建 数据集
先来看一下我们构建数据集合应该是什么样的,假设总数据为1000张。
为了方便,我们将数据放在/home/bingolwang/data 文件夹下。/home/bingolwang/data/VOCdevkit 这个目录下是VOC2007
VOC2007/
|-- Annotations #1000个xml文件。
|-- ImageSets
| `-- Main
| |-- test.txt #测试集
| `-- trainval.txt #训练集
`-- JPEGImages #1000个jpg文件
仔细看看 test.txt ,trainval.txt 这两个文件的格式,
test.txt
00002 #其实就是去掉了对应的 .jpg
00003
00100
00012
.....
trainval.txt #图片的名字到底有什么要求?不一定是6位码,也不一样定是从00000开始,只要
00000 #区分的开各个图片即可
00001
00004
00005
.....
JPEGImages ,Annotations文件夹中的内容
#Annotations dir 下的内容
00000.xml
00001.xml
00002.xml
00003.xml
......xml
01000.xml
#JPEGImages dir 下的内容
00000.jpg
00001.jpg
00002.jpg

本文介绍了如何构建SSD训练的数据集,包括数据组织结构、XML文件内容,以及训练过程中可能出现的错误和解决办法,如报错'Found background label in the dataset.'和训练时loss为nan的分析。
最低0.47元/天 解锁文章
4万+

被折叠的 条评论
为什么被折叠?



