转载自 黄朝辉的博客
0.前言
在未排序的数组中查找第k大的数。这里不对k的值进行判断了,认为它是合法的。
1.排序
public static int findKthLargest(int[] nums, int k) {
Arrays.sort(nums);
return nums[nums.length - k];
}
时间复杂度为O(nlog(n))。
2.通过堆
public static int findKthLargest(int[] nums, int k) {
PriorityQueue<Integer> q = new PriorityQueue<Integer>(k);
for (int i : nums) {
q.offer(i);
if (q.size() > k) {
q.poll();
}
}
return q.peek();
}
时间复杂度为O(nlog(k)),空间复杂度为 O(k) 。
3.快排
public static int findKthLargest(int[] nums, int k) {
if (k < 1 || nums == null) {
return 0;
}
return getKth(nums.length - k + 1, nums, 0, nums.length - 1);
}
public static int getKth(int k, int[] nums, int start, int end) {
int pivot = nums[end];
int left = start;
int right = end;
while (true) {
while (nums[left] < pivot && left < right) {
left++;
}
while (nums[right] >= pivot && right > left) {
right--;
}
if (left == right) {
break;
}
swap(nums, left, right);
}
swap(nums, left, end);
if (k == left + 1) {
return pivot;
} else if (k < left + 1) {
return getKth(k, nums, start, left - 1);
} else {
return getKth(k, nums, left + 1, end);
}
}
public static void swap(int[] nums, int n1, int n2) {
int tmp = nums[n1];
nums[n1] = nums[n2];
nums[n2] = tmp;
}
平均时间复杂度为O(n),最坏情况下为O(n^2)。