gazebo 中使用gmaping 建图 6.rosrun wpr_simulation keyboard_vel_ctrl 控制机器人运动。3.加载地图 rosrun map_server map_server map.yaml。二、launch 文件启动slam gmapping 建图。4、创建launch文件 gmapping.launch。一、使用gmapping 建图。
(四)ros中ros::init(argc,argv,”节点名称”)。中的节点名称和launch文件中的节点名称关系。 另外launch中的type参数就是cmakelist中 add_executable()和target_link_libraries()中第一个参数的名字,即编译出的可执行文件名称。Rosrun <功能包名称> <节点名称>。其中”节点名称”为ros::init中的ros节点名称。launch文件中的ros节点名称会替换ros。如果采样launch启动ros程序,name 参数为ros节点名称。2、使用launch 文件。
(三)ros 点云格式转PCL点云格式 uint8 INT8 = 1 // 1字节。uint8 INT16 = 3 // 2字节。uint8 INT32 = 5 // 4字节。uint8 UINT8 = 2 // 1字节。uint8 UINT16 = 4 // 2字节。uint8 UINT32 = 6 // 4字节。uint8 FLOAT32 = 7 // 4字节。
(一)ROS的安装 2、在打开的文件末尾一行添加: 151.101.84.133 raw.githubusercontent.com。密钥添加不成功的话,跟换密钥,一直不成功的话,考虑是不是网络问题,比如不能解析域名(DNS问题)(一)安装ubuntu18.04 系统(虚拟机或者是物理机,在此不再介绍)3、保存退出,在terminal中输入: sudo rosdep init。因为第一次安装ros可以出现了问题,所以重新执行。4、执行完输入:rosdep update即可。(四)ROS的安装与配置。(二)添加ROS镜像源。
(十二)rk3568 NPU 中部署自己训练的模型,(3)连板部署 修改/install/rknn_yolov5_demo_Linux/model中的coco_80_labels_list.txt文件为你识别的类别。更改/external/rknpu2/examples/rknn_yolov5_demo/include/postprocess.h。1、至于yolov5后处理代码,本人使用的事rk3568中sdk中的demo。中的类别个数为自己训练的类别数(默认为80 coco数据集)。执行export LD_LIBRARY_PATH=./lib。
(十二)rk3568 NPU 中部署自己训练的模型,(1)使用yolov5训练自己的数据集-模型训练部分 训练完成后,在runs/train/exp/weights/目录下生成两个模型文件一个last.pt 一个best.pt。yolov5_train.txt和yolov5_val.txt分别给出了训练图片文件和验证图片文件的列表,在yolov5下生成了两个文件yolov5_train.txt和yolov5_val.txt。YOLOLabels下的文件是images文件夹下每一个图像的yolo格式的标注文件,images文件夹下有train和val文件夹,分别放置训练集和验证集图片;之后点击“Commits”
(十二)rk3568 NPU 中部署自己训练的模型,(1)使用yolov5训练自己的数据集-环境搭建部分 yolov5在yolov3的基础上有很大提高,在保持准确率的情况下,模型更小,更适合轻量化的嵌入式产品部署。NVIDIA 驱动下载:https://www.nvidia.cn/Download/index.aspx?对于cudnn直接将其解开压缩包,然后需要将bin,include,lib中的文件复制粘贴到cuda的文件夹下。cuda下载链接:https://developer.nvidia.com/cuda-downloads?以上三个都是按照自己的电脑显卡配置、以及操作系统来下载的,不可以随意下载。
瑞芯微芯片AI部分开发记录 第二节 《yolov3-tiny及darknet介绍》 此部分为瑞芯微芯片NPU部分的开发记录。包括服务器(PC)端模型训练、模型转换以及瑞芯微接口调用rknn模型,实现目标检测任务。本小节使用yolov3算法训练自己的数据集,并且部署到瑞芯微rk3568开发板上。使读者通过该博客能够实现,使用瑞芯微开发板检测到自己的目标图像。首先介绍几个概念:1、算法网 2、深度学习框架 3、模型文件一、深度学习框架:模型训练需要进行梯度计算、卷积计算等大量的矩阵运算。深度学习框架就是方便开发者实现此功能,让一个普通的开发人员轻松的实现深度学习任务。目前比较有
瑞芯微芯片AI部分开发记录 第一节 《PC端环境搭建2》 此部分为瑞芯微芯片NPU部分的开发记录。包括服务器(PC)端模型训练、模型转换以及瑞芯微接口调用rknn模型,实现目标检测任务。本小节使用yolov3算法训练自己的数据集,并且部署到瑞芯微rk3568开发板上。使读者通过该博客能够实现,使用瑞芯微开发板检测到自己的目标图像。一、安装cuda两种方法可安装cuda。一种为直接安装cuda。另一种为构建nvidia docker容器。本人采用的是后者。Docker的好处在这里就不强调了。直接安装cuda也可以,网上介绍很多。二、利用docker拉