# LeetCode 63. Unique Path II

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]


The total number of unique paths is 2.

Note: m and n will be at most 100.

public class Solution
{
public int uniquePathsWithObstacles(int[][] obstacleGrid)
{
if(obstacleGrid[0][0] == 1 ||
obstacleGrid[obstacleGrid.length-1][obstacleGrid[0].length-1] == 1) // obstacle at start point or finish point
return 0;

obstacleGrid[0][0] = -1; // start point

for(int i=0; i<obstacleGrid.length; i++) // row
{
for(int j=0; j<obstacleGrid[0].length; j++) // column
{
// if this is not obstacle
if(obstacleGrid[i][j] !=1)
{
// get left: left is not obstacle
if(j-1 >=0 && obstacleGrid[i][j-1] !=1)
obstacleGrid[i][j] += obstacleGrid[i][j-1];
// get top: top is not obstacle
if(i-1 >=0 && obstacleGrid[i-1][j] !=1)
obstacleGrid[i][j] += obstacleGrid[i-1][j];
}

}
}

return obstacleGrid[obstacleGrid.length-1][obstacleGrid[0].length-1] * -1;
}
}

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120