从零开始学数据分析之——《微积分》第二章 导数与微分

2.1 导数的概念

2.1.1 函数的变化率

设函数y=f\left ( x \right ),x\in D,当自变量x由点x_{0}变化到x_{0}+\bigtriangleup x时,相应的函数值由f\left ( x_{0} \right )变化到f\left ( x_{_0}+\bigtriangleup x \right ),此时f\left ( x_{_0}+\bigtriangleup x \right )f\left ( x_{0} \right )就是相应于自变量x改变量\bigtriangleup x的函数改变量,比值(f\left ( x_{_0}+\bigtriangleup x \right )-f\left ( x_{0} \right ))/\bigtriangleup x称为函数y=f(x)相应于自变量由x_{0}变化到x_{0}+\bigtriangleup x时的平均变化率。

2.1.2 导数的定义

1. 函数在一点的导数与导函数

定义2.1.1 设函数y=f(x)在点x_{0}的某一邻域U\left ( x_{0} \right )内有定义,给自变量x在点x_{0}处的一个改变量\bigtriangleup x\left ( \bigtriangleup x\neq 0,x_{0}+\bigtriangleup x\in U\left ( x_{0} \right ) \right ),函数f(x)相应地有改变量\bigtriangleup y=f\left ( x_{0}+\bigtriangleup x \right )-f\left ( x_{0} \right ),如果\lim_{\bigtriangleup x\rightarrow 0}\tfrac{\bigtriangleup y}{\bigtriangleup x}存在,则称函数y=f(x)对x在x_{0}点可导,并称此极限值为函数y=f(x)对x在点x_{0}的导数。

定义2.1.2 如果函数y=f(x)在开区间I内每一点对x可导,则称函数f(x)在开区间I内可导。

2.求导数举例

(1)求相应于自变量改变量\bigtriangleup x的函数改变量

(2)作比值

(3)求极限

2.1.3 导数的意义

(1)瞬时速度

(2)切线斜率

2.1.4 左、右导数

左导数、右导数统称为单侧导数

由函数在一点存在极限的充要条件知,函数y=f(x)在x_{0}点可导的充要条件是函数y=f(x)在x_{0}

点左、右导数存在且相等

2.1.5 函数的可导行与连续性的关系 

若函数y=f(x)在点x_{0}处可导,则f(x)在点x_{0}处连续。

连续是可导的必要条件,但不是充分条件,即可导一定连续,但连续不一定可导

2.2 求导法则

2.2.1 函数和、差、积、商的求导法则

1、代数和的导数

y'=\left ( u\left ( x \right ) \pm v\left ( x \right )\right )'=u'\left ( x \right )\pm v'\left ( x \right )

2、乘积的导数

y'=\left ( u\left ( x \right )v\left ( x \right ) \right )'=u'(x)v(x)+u(x)v'(x)

 3、商的导数

y'=\left ( \frac{u(x)}{v(x)} \right )'=\frac{u'(x)v(x)-u(x)v'(x)}{v^{2}(x)}

2.2.2 反函数的求导法则

设函数y=f(x)在某区间I内是单调的连续函数,如果在I内某点x处函数f(x)可导,且在这点的导数f'(x)不等于零,则其反函数x=\varphi (y)在对应的点y(y=f(x))处可导,并且\varphi '(y)=\frac{1}{f'(x)}

2.2.3 复合函数的求导法则 

u=\varphi \left ( x \right )在点x可导,而y=f(u)在对应的点u=\varphi \left ( x \right )可导,则复合函数y= f\left [ \varphi (x) \right ]在点x可导,并且\left ( f\left [ \varphi \left ( x \right ) \right ] \right )'=f'\left ( u \right )\cdot \varphi '\left ( x \right )\frac{dy}{dx}=\frac{dy}{du}\cdot \frac{du}{dx}

复合函数的求导法则又称为链式法则

1. 基本初等函数的导数公式

2. 求导法则 

 

2.3 隐函数的导数和由参数方程确定的函数的导数

把方程F(x,y)=0中的y看成是由方程所确定的隐函数(从而y的函数就是以y为中间变量的x的复合函数),这时将方程两边对自变量x求导,就得到一个含有x,y,y'的等式,从中解出y'即可

2.4 高阶导数

 y^{\left ( n \right )}=f^{\left ( n \right )}\left ( x \right )=\frac{d^{n}y}{dx^{n}}=\left ( f^{\left ( n-1 \right )} \left ( x \right )\right )'

二阶及二阶以上的导数统称为高阶导数

 高阶导数运算法则:

1)\left ( u\pm v\right )^{\left ( n \right )}=u^{\left ( n \right )}\pm v^{\left ( n \right )}

2)\left ( cu \right )^{\left ( n \right )}=cu^{\left ( n \right )}

3)\left ( uv \right )^{\left ( n \right )}=\sum_{I=0}^{n}\textrm{C}_{n}^{I}u^{\left ( n-i \right )}v^{\left ( i \right )}

2.5 微分

2.5.1 微分的定义

定义2.5.1 设函数y=f(x)在x_{0}的某个邻域内有定义,当自变量在x_{0}处取得增量\bigtriangleup x(点x_{0}+\bigtriangleup x仍在该邻域内)时,如果相应的函数的增量\bigtriangleup y=f\left ( x_{0}+\bigtriangleup x \right )-f\left ( x_{0} \right )可以表示为:\bigtriangleup y=A\bigtriangleup x+\bigcirc \left ( \bigtriangleup x \right )

dy=A\bigtriangleup x

函数y=f(x)在点 x_{0}可微的充分必要条件是函数f(x)在点x_{0}可导,并且当y=f(x)在点x_{0}可微时,有dy=f'\left ( x_{0} \right )\bigtriangleup x

2.5.2 微分的几何意义

曲线y=f(x)在点M\left ( x_{0},y_{0} \right )附近的局部范围内可以用它在这点处的切线近似地替代

2.5.3 微分公式与运算法则

1. 基本初等函数的微分公式

2. 微分的四则运算法则

1)d\left ( u\pm v \right )=du\pm dv

2)d\left ( uv \right )=vdu+udv

3)d\left ( cu \right )=cdu(c为常数)

4)d\left ( \frac{u}{v} \right )=\frac{vdu-udv}{v^{2}}

2.5.4 微分的应用

1.近似计算

2.误差估计

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值