滴滴章文嵩:我们比AlphaGo面临的问题要复杂很多很多倍

AI科技大本营导读】4 月 14 日,知名职业棋手柯洁发微博称自己的钥匙和护照落在了一辆刚刚乘坐过的滴滴车里,一个多小时没能联系上司机。滴滴客服在了解情况后“建议去报警”。


这引来了各路网友关于滴滴打车安全、订单指派策略等话题的广泛讨论。


在去年的一次演讲中,滴滴出行副总裁文嵩将滴滴平台派单算法的复杂度和 Google 的人工智能棋手 AlphaGo 作对比,强调滴滴派单是一个极为复杂的时空调度问题,而围棋的规则很确定。在问题搜索空间上,出行平台派单要比围棋大得多。


下面是文嵩演讲,内容转载自造就(公众号ID:xingshu100):




640?wx_fmt=png&wxfrom=5&wx_lazy=1

滴出行高级副总裁

智慧交通项目负责人


大家好,我是滴滴的章文嵩。今天非常高兴有机会来跟大家分享滴滴共享出行和滴滴的智慧交通。


中国的交通问题是世界级的挑战。

 

640?wx_fmt=jpeg


我们的城市人口密度非常高,超过一百万人口的城市有142个,美国只有9个,大概是他们的16倍。


中国的道路资源非常紧张,过去十年私家车每年的增速是13%左右,而道路资源每年只增加1%左右,供应远远赶不上需求的增长速度,所以拥堵在中国是普遍现象。

 

但是,这个问题既是挑战,也是机会。

 

640?wx_fmt=jpeg


滴滴非常幸运,赶上了这个机会。经过过去五年多的高速发展,滴滴已经成为全球最大的一站式出行平台。


在这个过程中,我们积累了大量的数据,在国内已经覆盖了400多个城市,有4亿多用户,并且目前还在国际化的进程中。

 

640?wx_fmt=jpeg


实际上,滴滴是一家科技驱动的大数据公司,这是我们当初创业也没有想到的。我们正在通过“科技+数据”的方式,让人们的出行体验变得更美好。

 

一张快车订单是如何生成的?


640?wx_fmt=jpeg

 

滴滴平均一天要做两百亿次路径规划,高峰时段,嘀嗒一秒钟,规划一百万次,这是巨大的运算量,都是为了不断提升我们的效率和用户体验。

 

我们最复杂的系统就是派单系统。派单可能是大家以为的最简单的事情,有些公司也是这么做的,一个订单冒出来,那找最临近的司机,派给这个司机了,实际上他不一定是最优的,哪怕仅隔1毫秒的时间。

 

640?wx_fmt=jpeg


比如给A用户派了离他最近的一个司机,假设在两公里之外,但是一毫秒之后,离这个司机只有几百米的地方,有一个B用户冒出来了,就一毫秒,那么刚刚派的单就不是最优的。怎么办呢?

 

平台会让请求等待两秒钟,在两秒钟里面,攒了足够的订单需求和可用的司机,接着,相互之间两两构成一个巨大的系数举证,进行一次撮合。


640?wx_fmt=jpeg


这里面要考虑他们之间的物理距离,路径规划,接驾时间,司机的服务分,还有乘客的喜好等等,综合各种因素,最终,加权归一到0~1之间的值,如果值越大,表示相关性越高,最终求这个撮合对。

 

撮合对的这个相关系数的累加和最大,那至少就做到了两秒钟最优,但这两秒钟最优还不够。


640?wx_fmt=jpeg


滴滴面临的问题,是不同区域的供需不平衡,有些区域司机多,乘客少,就供过于求,司机的效率没发挥起来;有些区域是供不应求,订单特别多,但司机少,用户体验就差,这种情况下,我们任何当前两秒钟的调度,都会影响到未来的状态。

 

这个问题复杂到什么程度呢?


编者注:请看下面这个视频,它详细解释了滴滴进行交易撮合配对的技术原理,这样的干货千载难逢。



一天有86400秒,如果以两秒钟撮合一次计算,我们要考虑43200步(每一步都包含以上提到的计算量)。围棋格子里面只有19层棋局,最多361步,而且都有确定性的解,是赢,还是输,还是平局,但我们这个调度的最优解是在不停变化的,所以这个问题比Alpha Go面临的问题要复杂很多很多倍,需要非常强大的科技手段和计算能力。

 

因此,滴滴已经成长为一个“物·移·大·智·云”综合平台的典型代表。

 

共享出行数据,共建智慧交通

 

640?wx_fmt=jpeg


现在我们国家也在提倡用互联网+交通,大数据,云计算,人工智能的技术,多方位地来改善交通,因为滴滴掌握了非常宝贵的轨迹数据,在这一方面,滴滴已经完全有能力帮助实现。

 

过去交警往往是通过路口的检测器,摄像头,卡口,地磁这些方式取得轨迹数据,但将这些数据放在地图上面只是一个个的点,而路口与路口之间是一条边,边上的数据是没有的。


由于滴滴的业务发展,我们得到了边上的数据,把点和边汇集到一起,就可以看到全局的交通景象。


640?wx_fmt=jpeg

 

基于这些数据,政府部门、学术单位、第三方公司都可以利用它们来做一些相应的挖掘,多方共建,开发出更多的服务,实现“让出行更美好”的理念,这是滴滴“智慧交通”的使命,也是我们正在做的事情,优化出行结构,让整个交通系统可持续发展。

 

那么,如何优化出行结构,提升运力效率呢?

 

640?wx_fmt=jpeg


首先就是将所有的出行方式线上化。我们有步行的方式,还有自行车、公交车、地铁,出租车、自驾车,将它们都线上化之后,根据这些数据,政府部门可以对道路进行科学规划,对交通进行有效监管,企业可以据此降低成本,提高服务质量,形成一站式出行,给老百姓更多的选择。

 

滴滴在智慧交通里面的优势,一方面是前面所讲的数据的优势,其次还有技术的优势。

 

我们目前已经建立了一个智慧交通的平台,名叫“滴禹平台”,“滴禹”就是滴滴大禹的简称,希望能像大禹治水那样,通过智慧交通来疏导交通,让交通变得更通畅一些。

 

640?wx_fmt=gif


基于滴滴丰富而高质量的数据,我们做了全国四五十个重点城市的整体交通运行报告,除了排名和热点分析之外,我们还提供每一个城市的实时交通运行指数(TPI)。每一个城市都细分到每一个区每一条街。

 

我们可以看到哪些道路是最拥堵的,某个商圈怎么样,因为这些轨迹流都是实时的,只要指数出现异常,我们就能第一时间知道的,可能是路上有交通事故了,或者路边乱停车了,导致车速不快,所以我们会第一时间跟交警联动起来,交警可以及时去处理。


640?wx_fmt=jpeg

 

另外一个跟交警合作的事情是查酒驾。因为城市里面很多交通事故都跟酒驾有关,滴滴上代驾的订单量是全国最大的,所以我们有代驾热力图。


代驾热点附近往往餐馆特别多,大家吃饭,喝酒之后,要叫代驾,那我们知道这些车是经过哪些路径的,所以这些信息交警都可以获得,可以精准的抓酒驾,当然这个不是为了罚款,更多的是为了交通安全。

 

640?wx_fmt=jpeg


影响交通的还有一个关键:信号灯。国内的很多信号灯设置非常不合理,能不能尽可能让车在启动之后,一路畅行无阻,而不是每一个路口都要停一下?


我们通过轨迹流量的动态变化,每一个方向的绿信比(交通灯一个周期内可用于车辆通行的时间比例),不同路口之间的相位差,可以测算出干道、区域的优化模型,调整信号灯的周期来改善这个问题。


这个模型目前已经在全国六个城市240多个路口铺开,未来还会不断迭代,精益求精,争取更大规模地复制到更多的路口上面去,实现区域式集中“绿”化。


640?wx_fmt=gif

 

这是我们在济南的潮汐车道上运作了一个月多的拉链车。什么是潮汐车道?在很多城市都有这种情况,区域属性非常明显,比如工作区,住宅区,那么早高峰的时候,大家都从住宅区往工作区去,反方向的车流量特别少,晚上就反过来,形成潮汐车道。


所以当一个反向车流量特别大,另一个方向车流量特别小的时候,通过隔一条车道,给车流量更多的地方,这个实际上收效也是不错。

 

宜行城市:一站式出行,个性化服务

 

640?wx_fmt=jpeg


在公共交通领域我们也做很多创新,比如基于大数据,对现有路网进行评价并作出相应的规划,然后根据一些热点,做跟公交集团一起做定制巴士和跳站小巴,创造多样性的公共交通服务,最终将所有的出行方式都打通并且线上化以后,通过滴滴的APP,我们可以对出行作出更加高效、细致、实惠的规划。

 

例如在一个城市内,人们从A点到B点,我们可能有几十条路径规划,快车直达是一种选择,快车到一个地铁站,坐机场快线去机场,也是一个选择,骑ofo自行车,去公交站乘坐公共汽车也是一个选择……


这里面不光是把这个组合排列出来,还会为你实时计算路上的交通状况,有可能路上已经堵车了,这时候是不是根据用户的画像结合实际的路况,给用户做一个更精准有效的推荐?


640?wx_fmt=jpeg

 

我们相信,在一个城市里,如果我们把这个做好,会是一个很大的创新。当真正把所有交通工具打通之后,未来的出行平台,会像一个你个人的出行秘书一样,甚至有可能和你的日程表连接起来,你每天要去什么地方,它都帮你把所有路径规划和出行方式都安排好。

 

我想这就是未来交通,这就是我们真正要去的地方,真正实现为大众服务,以人为本的智慧交通。

 

谢谢大家。


招聘

AI科技大本营现招聘AI记者和资深编译,有意者请将简历投至:gulei@csdn.net,期待你的加入


AI科技大本营读者群(计算机视觉、机器学习、深度学习、NLP、Python、AI硬件、AI+金融、AI+PM方向)正在招募中,和你志同道合的小伙伴也在这里!关注AI科技大本营微信公众号,后台回复:读者群,添加营长请务必备注姓名,研究方向。

640?wx_fmt=gif
640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

AI科技大本营公众号ID:rgznai100640?wx_fmt=jpeg


☟☟☟点击 | 阅读原文 | 查看更多精彩内容

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页