1 算法介绍:
viola-jones论文的Adaboost:
经典Adaboost:
差别1:权重更新:
viola-jones论文的Adaboost权重变换:
a=log((1-e)/e)
判断正确的样本权重:W*(e/(1-e))
判断正确的样本权重:W(不变)
然后归一化。
经典Adaboost权重变换:
a=0.5*log((1-e)/e)
判断正确的样本权重:W*exp(-a)
判断正确的样本权重:W*exp(a)
然后归一化。
经典Adaboost的训练误差分析:
20180118更新 %%%%%%%%%%%%%%%%%%%%%%%%%
两者完全没有差别,最终结果是一样的
本文对比了Viola-Jones算法中使用的AdaBoost与经典的AdaBoost算法,在权重更新方面的不同之处,并指出尽管更新方式有所差异,但两种算法最终达到的效果相同。
1007

被折叠的 条评论
为什么被折叠?



