大数据量分析统计——电信经营分析项目心得

本文介绍了如何处理电信行业的大数据量分析问题,特别是通话清单的清洗、入库、分类合并与关联统计。通过Oracle数据库,利用分区表、索引和合理的数据处理策略,实现高效的数据统计,确保用户查询能在几秒内响应。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

众所周知,在电信行业,通话清单数据量非常大,因为用户每次通话交换机都会产生一条数据,数据保存的方式是放在文件。如果将数据文件导入到数据库中,很容易使数据量达千万级的数据库,另由于其它基础信息会放在其它表中,如果按照传统思维,进行简单的关联统计,数据库基本将无法统计出结果,即使是用小型机来运算,得到结果也是几天后的事情了。而用户最多只能等待20秒就需要了解结果,显然传统的简单的分析统计方法是无法实现大数据量的统计分析的。那如何对如此庞大的数据库进行统计分析呢?本人下面以Oracle数据库为例进行分析。

 

一、分析过程概述




       由于大数据量,在数据处理时,遵守的原则是,尽量将数据按各种分类分离,使得在各分类分析时,数据量最小。所以,在进行清单到报表的处理时,通常经过数据的清洗入库,分类合并得出中间结果,最后关联统计出结果数据。用户在查看报表时,已经是简单的由结果数据中查询各种数据。

 

二、分步详述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值