paper reading
文章平均质量分 93
梦家
博客主页:https://dreamhomes.top/
展开
-
【2021】Multi-Source Anomaly Detection in Distributed IT Systems
原文链接:https://dreamhomes.github.io/posts/202101251633.html文章链接:https://arxiv.org/abs/2101.04977源码链接:未公布TL;DR针对分布式系统服务的异常检测问题,文中提出了一种多模态的异常检测模型,联合了 trace 和 log 数据的特征表示来共同判定异常;对于异常检测任务将其形式化表示成 NTP next template prediction,同时适用于log和trace的异常检测;在实验中论文验证了.原创 2021-01-25 16:54:40 · 530 阅读 · 0 评论 -
【2017/MLG】graph2vec: Learning Distributed Representations of Graphs
原文链接:https://dreamhomes.github.io/posts/202101181459.html文章链接:https://arxiv.org/pdf/1707.05005.pdf源码链接:https://github.com/MLDroid/graph2vec_tfTL;DR目前图表示学习方法主要是学习图中节点或者子图的隐含向量,但现实中很多任务例如图分类或者聚类都需要将整个图编码成固定长度的向量;此外,以前基于图核的方法由于使用自定义特征因此通用性较差。本文中提出的一种无.原创 2021-01-18 15:14:20 · 1132 阅读 · 0 评论 -
【2019/ICML】DAG-GNN: DAG Structure Learning with Graph Neural Networks
原文链接:https://dreamhomes.github.io/posts/202101041501.html文章链接:https://arxiv.org/abs/1904.10098源码链接:https://github.com/fishmoon1234/DAG-GNNTL;DR论文中提出一种新的DAG编码架构 DAG-GNN,其实模型的本质就是一个图变分自编码器,模型的优点是既能处理连续型变量又能处理离散型变量;在人工数据集和真实数据集中验证了模型结果可以达到全局最优 ????;Mo原创 2021-01-04 15:06:22 · 1741 阅读 · 1 评论 -
【2019/IJCAI】AddGraph: Anomaly Detection in Dynamic Graph Using Attention-based Temporal GCN
文章链接:https://www.ijcai.org/Proceedings/2019/0614.pdf源码链接:TL;DR论文结合GNN提出了动态图中半监督的边异常检测模型 AddGraph,同时考虑了节点的结构,属性和时序特征。对于标签数据不足的问题,在训练过程中采用了 negative sampling 和 margin loss 两个技巧。在两个真实数据集的实验中取得了较好的效果。Problem Definition论文中的方法主要用于推荐系统中的异常操作检测,举个例子:异常的用户想自.原创 2020-12-17 14:07:55 · 955 阅读 · 4 评论 -
【2015/IE】Variational Autoencoder based Anomaly Detection using Reconstruction Probability
文章链接:Variational Autoencoder based Anomaly Detection using Reconstruction Probability源码链接: https://github.com/Michedev/VAE_anomaly_detection论文总体结构Abstract: 提出了一种基于重构概率的异常检测方法可变自动编码器。IntroductionBackgroud2.1 Anomaly detection:介绍异常检常用几个方法。2.2 Autoe.原创 2020-12-17 14:05:42 · 2338 阅读 · 3 评论