MultiTableApp

本文演示了如何使用 C# 和 OleDb 在两个表(Customers 和 Orders)之间建立数据关系,并遍历显示客户及其订单信息。

using System;
using System.Data;
using System.Data.OleDb;

namespace MultiTableApp
{
 /// <summary>
 /// Class1 腔晡猁佽隴﹝
 /// </summary>
 class MultiTable
 {
  static void Main(string[] args)
  {
   OleDbConnection connection = new OleDbConnection(@"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=E:/C#Program/C#100/Chapter3/NWIND.mdb");

   connection.Open();

   DataSet dataset = new DataSet();
   
   OleDbDataAdapter custAdapter = new OleDbDataAdapter("SELECT * FROM Customers",connection);
   OleDbDataAdapter orderAdapter = new OleDbDataAdapter("SELECT * FROM Orders",connection);
   
   custAdapter.Fill(dataset,"Customers");
   orderAdapter.Fill(dataset,"Orders");

   DataRelation custOrderRel = dataset.Relations.Add("CustOrders",
    dataset.Tables["Customers"].Columns["CustomerID"],
    dataset.Tables["Orders"].Columns["CustomerID"]);

   foreach(DataRow custRow in dataset.Tables["Customers"].Rows)
   {
    Console.WriteLine("CumtomerID:" + custRow["CustomerID"] + " Name: " + custRow["CompanyName"]);

    foreach(DataRow orderRow in custRow.GetChildRows(custOrderRel))
    {
     Console.WriteLine("   OrderID:" + orderRow["OrderID"]);
    }
   }
   connection.Close();
  }
 }
}
 

内容概要:本文围绕“融合模拟退火和自适应变异的混沌鲸鱼优化算法(AAMCWOA)”展开研究,提出一种创新的智能优化算法,通过引入混沌初始化、模拟退火机制和自适应变异策略,有效提升传统鲸鱼优化算法的收敛速度与全局搜索能力,避免陷入局部最优。该算法在MATLAB平台上实现,并应用于RBF神经网络的参数优化与分类预测,验证了其在复杂非线性问题中的优越性能。文档还附带14页算法原理解析,深入阐述各改进模块的设计思路与数学模型。此外,文中列举了大量相关科研方向与应用场景,涵盖信号处理、路径规划、电力系统、故障诊断、机器学习等多个领域,展示了该算法的广泛适用性。; 适合人群:具备一定编程基础和优【创新SCI算法】AAMCWOA融合模拟退火和自适应变异的混沌鲸鱼优化算法研究(Matlab代码实现)化算法背景,从事智能算法研究或工程优化应用的研究生、科研人员及工程技术人员,尤其适合致力于智能计算、人工智能与MATLAB仿真的1-3年经验研究人员。; 使用场景及目标:①用于解决复杂函数优化、神经网络参数调优、分类预测等科研问题;②作为SCI论文复现与算法创新的基础工具,支撑高水平学术研究;③结合MATLAB代码实现,快速验证算法有效性并拓展至实际工程场景。; 阅读建议:建议结合提供的算法原理详解文档逐模块理解AAMCWOA的实现逻辑,通过调试MATLAB代码掌握参数设置与性能评估方法,并尝试将其迁移至其他优化任务中进行对比实验,以深化对智能优化算法设计思想的理解。
内容概要:本文研究了基于Koopman算子理论与模型预测控制(MPC)相结合的Koopman-MPC方法,用于四旋翼无人机的数据驱动学习与控制。该方法通过采集系统输入输出数据,利用Koopman算子将非线性动力学系统映射到高维线性空间,从而实现对复杂非线性行为的近似线性建模,并在此基础上构建高效的MPC控制器。文中详细介绍了算法原理、数学推导、Matlab代码实现流程及仿真验证过程,展示了该方法在提升控制精度和降低计算复杂度方面的优势。同时,文档还提供了完整的代码资源与网盘链接,便于读者复现实验并进一步研究。; 适合人群:具备一定控制理论基础和Matlab编程能力的高校研究生、科研人员及从事无人机控制、非线性系统建模与先进控制算法开发的工程技术人员。; 使用场景及目标:①应用于四旋翼无人机等复杂非线性系统的Koopman-MPC 基于数据驱动的学习和控制四旋翼无人机研究(Matlab代码实现)建模与控制;②为数据驱动控制方法的研究提供可复现的Matlab实现案例;③推动Koopman理论与MPC结合在实际工程中的落地应用; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解Koopman算子构造、字典函数选择、线性化建模及MPC优化求解等关键步骤,同时参考文档中列出的其他相关研究方向拓展应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值