算法竞赛进阶指南——二分:防线

防线

题目描述:

就如同中二漫画的情节一样,怪兽达达打算毁掉这个世界。

数学竞赛界的精英 lqr 打算阻止怪兽达达的阴谋,于是她集合了一支由数学竞赛选手组成的超级行动队。

由于队员们个个都智商超群,很快,行动队便来到了怪兽达达的黑暗城堡的下方。

但是,同样强大的怪兽达达在城堡周围布置了一条“不可越过”的坚固防线。

防线由很多防具组成,这些防具分成了 N 组。

我们可以认为防线是一维的,那么每一组防具都分布在防线的某一段上,并且同一组防具是等距离排列的。

也就是说,我们可以用三个整数 S, E 和 D 来描述一组防具,即这一组防具布置在防线的 S,S + D,S + 2D,…,S + KD(K∈ Z,S + KD≤E,S + (K + 1)D>E)位置上。

黑化的怪兽达达设计的防线极其精良。如果防线的某个位置有偶数个防具,那么这个位置就是毫无破绽的(包括这个位置一个防具也没有的情况,因为 0 也是偶数)。

只有有奇数个防具的位置有破绽,但是整条防线上也最多只有一个位置有奇数个防具。

作为行动队的队长,lqr 要找到防线的破绽以策划下一步的行动。

但是,由于防具的数量太多,她实在是不能看出哪里有破绽。作为 lqr 可以信任的学弟学妹们,你们要帮助她解决这个问题。

输入格式

输入文件的第一行是一个整数 T,表示有 T 组互相独立的测试数据。

每组数据的第一行是一个整数 N。

之后 N 行,每行三个整数 S~i~,E~i~,D~i~,代表第 i 组防具的三个参数,数据用空格隔开。

输出格式

对于每组测试数据,如果防线没有破绽,即所有的位置都有偶数个防具,输出一行 "There's no weakness."(不包含引号) 。

否则在一行内输出两个空格分隔的整数 P 和 C,表示在位置 P 有 C 个防具。当然 C 应该是一个奇数。

数据范围

防具总数不多于10^8,

S_i <= E_i,

1 <=T <= 5,

N <= 200000,

0 <= S_i,E_i,D_i <= 2^{31}-1$

输入样例:

3
2
1 10 1
2 10 1
2
1 10 1 
1 10 1 
4
1 10 1 
4 4 1 
1 5 1 
6 10 1

输出样例:

1 1
There's no weakness.
4 3

代码详解:

因为这道题的数据比较特殊,可能存在并且有且只有一个奇数点,所以通过二分来求解。

二分判断时,判断在mid这个数之前存在有多少个点(相当于是前缀和,但是算法不一样),如果是偶数个,则说明可能存在的点在mid~r中,反之则在左区间。
这里有一个特殊的计算技巧:当计算mid之前的数时,sum(统计个数)+=[min(f[i].e,mid) - f[i].s]/f[i].d+1。因为d是一个区间,所以计算之后取整还要+1
然后当二分循环完毕之后,判断l是否符合l之前的防具加起来为奇数,若符合,那么就输出sum(l)-sum(l-1)。

#include<bits/stdc++.h>
using namespace std;
int t;
struct prt{
	int s, e, d;
};
prt f[200009];
int n;
long long check(int x)
{
	long long sum=0;
	for(int i=0;i<n;i++)
	{
		if(f[i].s<=x) 
		sum+=( min(f[i].e,x) - f[i].s ) / f[i].d + 1;
	}
	return sum;
}
int main()
{
	scanf("%d",&t);
	
	while(t--)
	{
		int l=0,r=0;
		scanf("%d",&n);
		for(int i=0;i<n;i++)
		{
			scanf("%d%d%d",&f[i].s,&f[i].e,&f[i].d);
			r=max(r,f[i].e);
		}
		while(l<r)
		{
			int mid=(l+r)>>1;
			if(check(mid)%2==0) l=mid+1;
			else r=mid;
		}
		int anss=check(r)-check(r-1);
		if(anss%2==0) cout<<"There's no weakness."<<endl;
		else cout<<r<<" "<<anss<<endl;
	}
	return 0;
}
发布了7 篇原创文章 · 获赞 0 · 访问量 70
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 1024 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览