【一】hadoop概述

##大数据技术概览

一、什么是大数据
定义:大数据(bigdata),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高速增长率和多样化的信息资产。

特点:大量、告诉、多样、低价值密度、真实性。

数据计量单位:byte、bit、k、M、G、T、P 之间都是1024

传统数据与大数据区别:
在这里插入图片描述

**大数据:**超出传统数据库工具手机、存储、管理和分析能力的数据集

4v特征 大量、高速、多样、价值密度低

二、应用场景

基于大数据的数据仓库
构建数据仓库主要用来进行数据分析
传统数据仓库主要单机存储
大数据分布式的存储,分布式计算

基于大数据实时流处理
车流量信息

三、如何学习大数据

1、硬件
操作系统:win7
系统类型:64位
内存:8G
操作系统:win10
系统类型:64位
内存:8G
检测个人电脑支持的最大内存
win+r
打开cmd
wmic memphysical get maxcapacity

2、软件
Google浏览器
火狐浏览器
IDM下载安装配置
MarkDown马克飞象
JDk安装
Notepad++
Vmware Work station 虚拟化桌面
linux
Xshell
IDEA

### Hadoop 概述及基础知识 Hadoop 是由 Apache 基金会开发的个分布式系统基础架构,主要用于解决海量数据的存储和分析计算问题[^2]。它提供了种可靠且高效的框架来处理大规模数据集。以下是 Hadoop 的核心组成部分及其功能: #### 1. Hadoop 的核心模块 - **Hadoop Common**:这是 Hadoop 的基础模块,提供了其他 Hadoop 模块所需的通用工具和库[^1]。 - **Hadoop Distributed File System (HDFS)**:HDFS 是 Hadoop 的分布式文件系统,用于存储大规模数据并支持高吞吐量的数据访问。它是 Hadoop 数据存储的核心组件[^1]。 - **Hadoop YARN**:YARN(Yet Another Resource Negotiator)是个用于作业调度和集群资源管理的框架。它负责分配计算资源并跟踪它们的使用情况。 - **Hadoop MapReduce**:这是个基于 YARN 的计算框架,用于并行处理大数据集。MapReduce 将任务分解为多个小任务,并在分布式环境中执行这些任务,最后将结果合并[^1]。 #### 2. Hadoop 的优势 Hadoop 具有以下显著特点: - **高可靠性**:通过数据冗余和错误恢复机制,Hadoop 能够确保数据的安全性和完整性[^3]。 - **高扩展性**:Hadoop 支持横向扩展,可以通过增加节点来提升系统的处理能力。 - **高效性**:Hadoop 的分布式计算模型允许其快速处理大规模数据集[^3]。 - **高容错性**:即使某个节点出现故障,Hadoop 也能自动重新分配任务并继续运行。 #### 示例代码:启动 Hadoop 集群 以下是个简单的命令示例,用于启动 Hadoop 集群中的相关服务: ```bash # 启动 HDFS start-dfs.sh # 启动 YARN start-yarn.sh ``` #### 学习 Hadoop 的建议 对于初学者来说,可以从以下几个方面入手学习 Hadoop: - 理解分布式系统的概念以及 Hadoop 在其中的角色。 - 掌握 HDFS 的基本操作,例如文件上传、下载和查看等。 - 学习 MapReduce 编程模型,并尝试编写简单的 MapReduce 程序。 - 了解 YARN 的工作机制以及如何进行资源管理。 ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值