排序算法6-归并排序

描述

归并排序采用了“分治”的思想

“分”:将大序列逐步分为一个个小序列,可以理解为递归拆分子序列的过程,递归深度为log2n

“治”:再将两个有序的小序列排序编回有序的大序列,两个小序列各需要一个指针逐步向后移动,所指元素比对由小至大放入temp,完成后,再将temp中已经完成排序的大序列copy进原序列,完成本次“治”;继续递归,直至整个序列排序完成

代码实现

/**
 * 归并排序
 */
public class MergeSort {
    public static void main(String[] args) {
        int[] arr = {9, 8, 7, 6, 5, 4, 3, 2, 1};
        sort(arr);
        System.out.println(Arrays.toString(arr));
    }

    public static void sort(int[] arr) {
        //在排序前,先建好一个长度等于原数组长度的临时数组,避免递归中频繁开辟空间
        int[] temp = new int[arr.length];
        sort(arr, 0, arr.length - 1, temp);
    }

    private static void sort(int[] arr, int left, int right, int[] temp) {
        if (left < right) {
            int mid = (left + right) / 2;
            //左边归并排序,使得左子序列有序
            sort(arr, left, mid, temp);
            //右边归并排序,使得右子序列有序
            sort(arr, mid + 1, right, temp);
            //将两个有序子数组合并操作
            merge(arr, left, mid, right, temp);
        }
    }

    private static void merge(int[] arr, int left, int mid, int right, int[] temp) {
        //左序列指针
        int i = left;
        //右序列指针
        int j = mid + 1;
        //临时数组指针
        int t = 0;
        while (i <= mid && j <= right) {
            if (arr[i] <= arr[j]) {
                temp[t++] = arr[i++];
            } else {
                temp[t++] = arr[j++];
            }
        }
        //将左边剩余元素填充进temp中
        while (i <= mid) {
            temp[t++] = arr[i++];
        }
        //将右序列剩余元素填充进temp中
        while (j <= right) {
            temp[t++] = arr[j++];
        }
        t = 0;
        //将temp中的元素全部拷贝到原数组中
        while (left <= right) {
            arr[left++] = temp[t++];
        }
    }
}

性能

归并排序的最坏、最好、平均时间复杂度都是O(nlogn),能用到完全二叉树排序的算法都不会太慢

以为需要一个相同大小的序列作为temp,所以它的空间复杂度是O(n)

相同值的元素的相对位置不会发生改变,所以它是稳定

©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页