Attention-drivenGraphClusteringNetwork

01_Attention-drivenGraphClusteringNetwork

Abstract

1.  传统的卷积网络与图卷积网络可以用于聚类操作,自编码器用于学习到节点向量的低维、紧凑的向量表示,图卷积神经网络捕捉整个图的拓扑特征

2.  现存工作的缺点:

  1. 缺乏一种组合机制,自适应的融合两种特征表示
  2. 忽略了嵌入在不同层次的多尺度信息

3.  特点:

  1. 使用了异构融合模块来融合节点特征和图的拓扑特征
  2. 使用尺度融合模块来汇合不同层的多尺度特征的嵌入

4.  原因:

综合考虑了网络中大量的有区别的信息,直接产生聚类结果

Introduction

1.写作思路:聚类的概念->深度学习融入聚类的意义->深度聚类的先决条件(数据表示)  ->举例在聚类中数据表示的网络,以及那些网络的缺 陷->拓扑图特征学习的意义->加入图学习的模型->那些模型存在的缺点                                                                                                       

2.深度聚类的聚类的先决条件是:从潜在数据中提取复杂的模式来有效的进行数据表示                                                                               

3.既要关注节点属性特征,又要关注数据中嵌入的拓扑图信息

4.  他们将在任何情况下的拓扑图特征等价于节点的属性特征,仅考虑从最深层提取的特征,忽略了嵌入在不同层中的现有的但有区别的多尺 度信息

5.  AGCN  (注意力驱动的图聚类网络)包括两个融合模块:同层融合不同特征(GCN特征与AE特征)的AGCN-H与不同层不同尺度的AGCN- S,均使用了注意力机制

Proposed Method

AGCN-H

1.  GCN可以有效捕捉图的拓扑结构信息,  AE可以合理的提取节点的属性特征,  AGCN-H是为了可以更好地融合这两种信息

 

 

2.  使用自编码器来提取节点的隐特征,原始数据->编码器->隐数据->解码器->原始数据‘,损失函数是最小化重构代价

3.  Hi是单纯进行解码-编码得到的关于节点的特征表示,  Zi是从该层学习到的GCN的拓扑特征

4.学习对应的注意力系数(attention coefficients)。首先,将Zi和Hi拼接在一起,形成一个新的矩阵[Zi ∣∣Hi ] ∈ Rn×2di 。然后,引入一个全 连接层,该层由一个权重矩阵Wa  ∈ R2di ×2 参数化,用于捕捉拼接特征之间的关系。接下来,对[Zi ∣∣Hi ]和Wa进行乘法运算,并应用         LeakyReLU激活函数,具体表达式如下:

 

其中,  Mi  = [mi,1 ∣∣mi,2 ] ∈ Rn×2 是注意力系数矩阵,  mi,1 和mi,2 分别是衡量Zi和Hi重要性的权重向量。   根据得到的注意力系数矩阵Mi ,通过加权融合Zi和Hi的特征,在第i层上得到了适应性融合的GCN特征Zi(′),计算公式如下:

 

其中,  ⊙表示Hadamard乘积。   然后,得到的融合特征矩阵Z′ i作为第(i+1)层GCN的输入,用于学习表示Zi + 1,计算公式如下:

 

其中,  D是度矩阵,  I是单位矩阵,  Wi是权重矩阵。  

综上所述,这些公式描述了如何使用注意力系数来自适应地融合GCN特征和自编码器特征,以提高网络的表示能力和聚类效果。

AGCN-S

  1. 现将不同层的编码进行拼接

 

 

2.  不同层对于输入信息的语义信息不同,在聚类任务中发挥着不同的作用,不能简单地认为他们的重要性是相同的,于是,使用AGCN-S利 用注意力机制来融合不同尺度的信息,基本步骤都是:先拼接、再进行线性变化捕捉不同层的关联、每一行进行softmax得到注意力权重、 权重*原始信息得到最终结果

3.最终结果:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值