Spark性能调优之数据倾斜调优一站式解决方案原理与实战

本文深入探讨了Spark数据倾斜的原因、影响、判断与定位方法,提出了解决数据倾斜的一系列策略,包括复用RDD、广播Join、采样与随机数等方案,旨在提高Spark性能和避免内存溢出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第29章Spark性能调优之数据倾斜调优一站式解决方案原理与实战


29.1为什么说数据倾斜是分布式大数据系统的性能噩梦?

大数据有基本的三个特性:第一个是数据多样化,有着不同类型的数据,其中包括结构化和非结构化数据;第二个就是庞大的数据量;第三就是数据的流动性,从批处理到流处理。一般在处理大数据的时候都会面对这三个特性的问题,而Spark就是基于内存的分布式计算引擎,以处理高效和稳定著称,是目前处理大数据的一个非常好的选择。然而在实际的应用开发过程中,开发者还是会遇到种种问题,其中一大类就是和性能相关的。

在分布式系统中,数据分布在不同的节点上,每一个节点计算一部份数据,如果不对各个节点上独立的部份进行汇聚的话,我们是计算不到最终的结果。这就是因为我们需要利用分布式来发挥它本身并行计算的能力,而后续又需要计算各节点上最终的结果,所以需要把数据汇聚集中,这就会导致 Shuffle,而 Shuffle 又会导致数据倾斜。

数据倾斜杀人利器就是Out-Of-Memory(OOM),一般OOM都是由于数据倾斜所致!如果应用程序在运行时速度变的非常慢,这就有可能出现数据倾斜。它所带来的结果是原本程序可以

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

段智华

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值