Hive的自定义函数--UDF

本文介绍了如何在Hadoop Hive中创建一个用户定义函数(UDF)用于字符串大小写转换。通过编写Java代码并打包成JAR,然后在Hive中注册该函数,实现数据处理的自定义功能。详细步骤包括POM配置、UDF代码实现、Hive函数创建及删除,以及JAR文件的上传和使用。

我们在工作中最常用的应该就是UDF一进一出函数了,因此我给大家准备了一个大小写转换的例子希望可以帮到大家

pom如下:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.wy</groupId>
    <artifactId>func</artifactId>
    <version>1.0-SNAPSHOT</version>

    <dependencies>
        <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-exec -->
        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-exec</artifactId>
            <version>1.2.1</version>
        </dependency>
    </dependencies>

</project>

代码如下:

package com.wy.fun;

import org.apache.hadoop.hive.ql.exec.UDF;

public class ToUpper extends UDF {
    /**
     * 此方法的格式除了返回值类型、形参之外都不要变
     * 不然会出现一些默认其妙的问题
     */
    public static String evaluate(final String s){
        return s.toUpperCase();
    }
}

不要轻易使用Hadoop自己的数据类型如Text那些,因为当不同架构混合使用的时候会发生无法正常分装数据的问题

最后连接Hadoop将编译好的jar上传的hdfs上,之后使用如下语句操作函数的创建

//add语句使用的前提是jar在hive的jar路径下
add jar myudf.jar;
//add之后直接就可以运行create语句,加上temporary 创建的是临时函数,断开hive之后该函数失效,不加建立的是永久函数
create temporary function myudf as 'com.wy.ToUpper' using jar 'hdfs://wy:9000/myudf.jar';

//上面是jar放在了hive的lib下,如果我们的jar就在hdfs上那么我们直接使用下面这个语句就可以,同样的加上temporary 创建的是临时函数,断开hive之后该函数失效,不加建立的是永久函数
create function myudf as 'com.wy.ToUpper' using jar 'hdfs://wy:9000/myudf.jar';

//临时函数可以直接删除,但永久函数不可直接删除,只能从元数据库的FONC表中入手删除,还不一定可以删成功
drop temporary function myudf;

我们使用的时候直接和其他的内建函数一样就可以了

最后要说一个很常见的细节点,无论是你用开源云也好,还是阿里的MaxComputer也罢,一定会有调试日志输出的需求,这里以开源云或者说是云原生为例,在Hive中你有两种让自定义函数中的日志,出现在yarn上的方法

第一种是直接在代码中调用System.out.println() 或者 System.err.println() 这中方式最终会被yarn收集在His服务的task级别日志中,对应了标准输出和标准错误输出。第二种是调用日志框架,在你导入的自定义函数接口Jar中Hive自动依赖了apache 的common包,不需要你额外的去引入log4j包,这里面有能够直接使用封装好的日志工厂类

package udf;

//不要导错包
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.hive.ql.exec.UDF;

/**
 * 一个字符串转大写的UDF
 */
public class ToUP extends UDF {

    //也不要用错工厂类,不然很容易导致标准错误输出中一堆初始化异常
    static final Log LOG = LogFactory.getLog(ToUP.class.getName());

    public static String evaluate(final String s){
        LOG.info("日志框架的信息    evaluate 检测到函数的输出" + s);
        System.out.println("Java输出的信息       evaluate 检测到函数的输出" + s);
        return s.toUpperCase();
    }
}

最终这两种方式,你就可以在task级别日志中看到
在这里插入图片描述
使用apache的日志类好处是你不需要自己准备log4j的配置文件等等,只需要获取调用就行,但是不方便的是它输出在syslog里面,如果你实实在在的就想输出在标准输出和标准错误输出中,可以参考阿里云上的一篇文章,自己写一个简易的日志类调用就行-》https://help.aliyun.com/zh/maxcompute/user-guide/print-udf-logs#9319d07073jn5

import java.io.PrintWriter;
import java.io.StringWriter;
import java.text.SimpleDateFormat;

public class MyLogger {

  private static final SimpleDateFormat DATEFORMATE = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

  public static MyLogger getLogger(String name) {
    return new MyLogger(name);
  }

  private static boolean debug = false;

  private String prefix;

  public static void setDebug(boolean enableDebug) {
    debug = enableDebug;
  }


  public MyLogger(String name) {
    if (name == null) {
      this.prefix = "";
    } else {
      this.prefix = name + " - ";
    }
  }

  private String logCurrentTime() {
    return "[" + dateFormat.format(System.currentTimeMillis()) + "]";
  }

  public void log(String msg) {
    info(msg);
  }

  public void info(String msg) {
    System.out.println(logCurrentTime() + " " + prefix + msg);
  }

  public void debug(String msg) {
    if (MyLogger.debug) {
      System.out.println(logCurrentTime() + " [DEBUG] " + prefix + msg);
    }
  }

  public void warn(String msg) {
    System.err.println(logCurrentTime() + " [WARNING] " + prefix + msg);
  }

  public void warn(String msg, Throwable ex) {
    warn(msg);
    System.err.println(getStackTrace(ex));
  }

  public void error(String msg) {
    System.err.println(logCurrentTime() + " [ERROR] " + prefix + msg);
  }

  public void error(String msg, Throwable ex) {
    error(msg);
    System.err.println(getStackTrace(ex));
  }

  private String getStackTrace(Throwable t) {
    StringWriter sw = new StringWriter();
    t.printStackTrace(new PrintWriter(sw));
    return sw.toString();
  }

}
public class MyUdf extends UDF {
  
  public static final MyLogger LOGGER = MyLogger.getLogger(MyUdf.class.getName());

  @Override
  public void setup(ExecutionContext ctx) throws UDFException, IOException {
    logger.info("setup MyUdf");
  }
    
  public Integer evaluate(String s) {
    logger.debug("input s: " + s);
    int ret = 0;
    try {
      ret = Integer.parseInt(s);
    } catch (Exception e) {
      logger.error("parseInt error!", e);
    }
    return ret;
  }

}
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值