中文Stable Diffusion模型太乙使用教程
太乙模型介绍
在线体验地址: Stable Diffusion
-
太乙模型,首个开源的中文Stable Diffusion模型,基于0.2亿筛选过的中文图文对训练。
生成内容一直被视为 AI 领域中最具有挑战性的能力,最近大火的 AI 绘画背后,是 Stable Diffusion 模型的开源,催生了众多 AI 绘画的应用,得益于 Stability AI 的开源精神,这一创变推动了整个以英文为主的下游文生图生态的蓬勃发展。
然而在国内,目前大部分团队主要是基于翻译 API + 英文 stable diffusion 模型进行开发,但由于中英文之间所得存在文化差异导致遇到中文独特的叙事和表达时,这种模型就很难给出正确匹配的图片内容。因此,IDEA 研究院认知计算与自然语言研究中心(IDEA CCNL)开源了第一个中文版本的 stable diffusion 模型"太乙 Stable Diffusion",让中文的世界真正拥有具备中国文化内核的 AIGC 模型。
入门手册(如何写一个优秀的提示词)
avatar
avatar
懒人简洁版
提示词 Prompt:
不能出现中文的标点符号,比如中文的逗号,中文句号。并且需要赋予这幅画某种属性。
如:长河落日圆, 4k壁纸
反向提示词 Negative prompt:
一些负面词汇
通用反向提示词:广告, ,, !, 。, ;, 资讯, 新闻, 水印
画幅大小设置为512×512最佳。
一些基础准备
以下实验的随机种子均为:1419200315
avatar
一个逗号引发的水印
我们来看看什么都不改会是咋样的。
日出,海面上
Steps: 20, Sampler: PLMS, CFG scale: 7, Seed: 1419200315, Size: 512x512, Model hash: e2e75020, Batch size: 6, Batch pos: 0
avatar
可以看到,其实是会出现水印,以及画幅不满的问题的。
avatar
那我们把中文逗号换成