雾计算主要有哪些优点,主要面临哪些挑战?

雾平台由数量庞大的雾节点(即上文中雾使用的硬件设备,以及设备内的管理系统)构成。这些雾节点可以各自散布在不同地理位置,与资源集中的数据中心形成鲜明对比。

根据以上内容,可以总结出雾计算与云计算的不同:

更低:雾节点在网络拓扑中位置更低,拥有更小的网络延迟(总延迟=网络延迟+计算延迟),反应性更强。

更多:相比较云平台的构成单位——数据中心,雾节点数量庞大。

更广:雾节点拥有广泛的地域分布。

更轻:雾节点更轻量,计算资源有限。

这些不同给雾带来哪些优点,是什么使它成为物联网生态中又一不可或缺的部分呢?

雾计算还有以下优点:

省核心网络带宽:雾作为云和终端的中间层,本就在用户与数据中心的通信通路上。雾可以过滤,聚合用户消息(如不停发送的传感器消息),只将必要的消息发送给云,减小核心网络压力。

高可靠性:为了服务不同区域的用户,相同的服务会被部署在各个区域的雾节点上。这也使得高可靠性成为雾计算的内在属性,一旦某一区域的服务异常,用户请求可以快速转向其他临近区域。

背景信息了解:因为分布在不同区域,雾计算中的服务可以了解到区域背景信息,如本区域带宽是否紧张,根据这一知识,一个视频服务可以及时决策是否降低本地区视频质量,来避免即将到来的卡顿;而对一个地图应用,则可将本地区地图缓存,提高用户体验。

省电:数据中心的电力消耗已经成为重要成本,其中冷却系统占有不可忽视的比重。雾计算节点因为地理位置分散,不会集中产生大量热量,并不需要额外的冷却系统,从而减少耗电。

基于以上优点,雾能够弥补云的不足,并和云相互配合,协同工作。

云+雾

雾计算自提出就是作为云计算的延伸扩展,而不是云计算的替代。如前文所述,在物联网生态中,雾可以过滤,聚合用户消息;匿名处理用户数据保证隐秘性;初步处理数据,做出实时决策;提供临时存储,提升用户体验。

相对的,云可以负责大运算量,或长期存储任务(如:历史数据保存,数据挖掘,状态预测,整体性决策等等),从而弥补单一雾节点在计算资源上的不足。

这样,云和雾共同形成一个彼此受益的计算模型,这一新的计算模型能更好的适应物联网应用场景。

雾计算挑战

雾计算带来新的可能性的同时,也在安全性,高效利用资源,API等方面带来了新的挑战。雾使用大量分散设备,使中心化的控制变得困难;雾节点的资源相对受限,需要节点间的协同配合,才能优化各服务的部署;“何时将服务迁移至何处”则是应对移动终端设备,动态的应用场景需要考量的问题。

随着雾计算概念的发展,雾被进一步扩展到“地面上”。雾节点不再仅限于网络边缘层,还包括拥有宽裕资源的终端设备

终端设备与用户直接交互,数量庞大,在丰富雾的设备种类的同时,也带来更多动态属性,如电池电量,雾节点移动性等问题需要解决

从物联网的应用场景出发,由终端设备的资源限制谈到对云的需求,再由云在网络中的位置造成的限制谈到雾。探讨了云雾的对比,云雾的结合,雾的优点,雾的应用,雾的挑战。希望以此文抛砖引玉,和大家共同关注科技发展趋势。
  人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:
  云计算、雾计算、霾计算、边缘计算,具体指的是什么?
http://www.duozhishidai.com/article-1677-1.html
  雾计算是做什么的,与物联网的关系是什么?
http://www.duozhishidai.com/article-1222-1.html
  观察云计算、雾计算及物联网之间的区别及联系
http://www.duozhishidai.com/article-5919-1.html
  


多智时代-人工智能大数据学习入门网站|人工智能、大数据、物联网云计算的学习交流网站

多智时代-人工智能大数据学习入门网站|人工智能、大数据、云计算、物联网的学习服务的好平台
  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
分布式系统具有以下优点: 1. 可靠性和容错性:分布式系统可以将数据和计算任务分散到多个节点上,即使某个节点或组件发生故障,系统仍然可以正常运行,提高了系统的可靠性和容错性。 2. 可扩展性:通过将系统拆分成多个独立的模块,可以根据需求灵活地增加或减少节点数量,实现水平扩展,提高了系统的处理能力和吞吐量。 3. 性能和响应速度:分布式系统可以将计算任务分配到多个节点上并并行执行,提高了系统的处理速度和响应时间。 4. 灵活性和可定制性:分布式系统可以根据具体需求选择不同的组件和技术,实现灵活的架构设计和定制化开发,满足特定业务需求。 5. 备份和数据冗余:分布式系统可以将数据备份到多个节点上,提供数据冗余和容灾能力,确保数据的安全性和可用性。 然而,分布式系统也面临一些挑战和问题: 1. 一致性:在分布式环境中,保证多个节点之间的数据一致性是一个复杂的问题。需要使用一致性协议和分布式事务管理机制来解决数据一致性的问题。 2. 网络通信和延迟:分布式系统依赖于网络通信来传输数据和进行节点间的协作,网络延迟和不稳定性可能导致系统性能下降和响应时间延长。 3. 分布式事务管理:在分布式系统中,跨多个节点的事务管理变得复杂,需要解决分布式事务的并发控制、隔离性和持久性等问题。 4. 故障诊断和调试:分布式系统中的故障诊断和调试比较困难,需要使用分布式日志、监控和调试工具来定位和解决故障。 5. 安全性和权限控制:分布式系统面临更多的安全威胁,需要实施有效的身份认证、权限控制和数据加密等措施来保护系统和数据的安全。 有效地解决这些问题需要综合考虑系统架构设计、算法选择、网络优化以及适当的容错和故障恢复机制。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一抹斜阳尽余辉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值