转载自:http://www.douban.com/note/287485797/
一、查看数据结构
dim(iris) # 了解数据集的维度,有多少行多少列?
names(iris) # 数据有哪些列?
str(iris) # 数据的结构如何?
attributes(iris) # 数据的列名、行名和数据结构
然后看看数据集前几行和后几行长成什么样子:
iris[1:5, ] # 看看数据的前5行
head(iris) # 看看数据的前6行
tail(iris) # 看看数据的最后6行
iris[1:10, "Sepal.Length"] # Sepal.Length变量的前10个取值
iris$Sepal.Length[1:10] # 用另外一种形式取出
二、看看单个变量的情况
summary(iris) # 看看单个变量的关键数据:最小值、25%分位数、中位数、均值、75%分位数、最大值
quantile(iris$Sepal.Length) # 单个变量的1%、25%、50%、75%、100%分位数
quantile(iris$Sepal.Length, c(0.1, 0.3, 0.65)) # 指定分位点对应的分位数
mean(),median(),range() # 返回均值、中位数和数据的范围
对于连续变量:
var() # 返回变量的方差
hist(iris$Sepal.Length) # 画出变量的直方图,看看变量的分布情况
plot(density(iris$Sepal.Length)) # 画出变量的密度函数图
对于类别变量:
table(iris$Species) # 统计每个类别的计数,了解一下各个类别的分布
pie(table(iris$Species)) # 画出每个类别的占比饼图
barplot(table(iris$Species)) # 画出柱状图
三、观察多个变量之间的关系
首先看看变量之间的相关性:
cov(iris[ , 1:4]) # 计算变量之间的协方差矩阵
cor(iris[ , 1:4]) # 计算变量之间的相关系数矩阵
然后研究一些在不同的目标变量水平下,某变量的基本情况:
aggregate(Sepal.Length~Spacies, summary, data=iris) # 对于Sepal.Length变量,在每个Species水平上执行summary计算
boxplot(Sepal.Length~Species, data=iris) # 针对每个Species水平绘制Sepal.Length的盒形图
with(iris, plot(Sepal.Length, Sepal.Width, col=Species, pch=as.numeric(Species))) #针对每个Species水平绘制两个变量的散点图,并用颜色和点状区分
plot(jitter(iris$Sepal.Length), jitter(iris$Sepal.Width))
接着用图形的方式研究变量之间的关系:
pairs(iris) # 绘制任意两个矩阵之间的散点图,发现变量之间的相关性
四、看看其他方面
三维散点图:
library(scatterplot3d)
scatterplot3d(iris$Petal.Width, iris$Sepal.Length, iris$Sepal.Width)
构造相似性矩阵,用热图可视化样本之间的相似性:
distMatrix <- as.matrix(dist(iris[,1:4]))
heatmap(distMatrix)
以Sepal.Length和Sepal.Width为横纵坐标,分水平,以Petal.Width大小为颜色,探索数据之间的关系:
library(lattice)
levelplot(Petal.Width~Sepal.Length*Sepal.Width, iris, cuts=9,col.regions=grey.colors(10)[10:1])
以等高线的形式探索数据的关系:
library(lattice)
filled.contour(volcano, color=terrain.colors, asp=1,plot.axes=contour(volcano, add=T))
画一顶帽子:
persp(volcano, theta = 25, phi = 30, expand = 0.5, col = "lightblue")
平面坐标可视化,研究不同类别变量之间的差异:
library(MASS)
parcoord(iris[1:4], col=iris$Species)
还可以用另外一个函数实现
library(lattice)
parallelplot(~iris[1:4] | Species, data=iris)
最后介绍一下ggplot2这个包,非常强悍,后续专门找一个晚上重点学习,一个简单的例子:
根据Species的不同类别,绘制Sepal.Length和Sepal.Width的散点图。
library(ggplot2)
qplot(Sepal.Length, Sepal.Width, data=iris, facets=Species ~.)
五、保存图片
# save as a PDF file
pdf("myPlot.pdf")
x <- 1:50
plot(x, log(x))
graphics.off()
# Save as a postscript file
postscript("myPlot2.ps")
x <- -20:20
plot(x, x^2)
graphics.off()