在平面上有一些二维的点阵。
这些点的编号就像二维数组的编号一样,从上到下依次为第 11 至第 nn 行,从左到右依次为第 11 至第 mm 列,每一个点可以用行号和列号来表示。
现在有个人站在第 11 行第 11 列,要走到第 nn 行第 mm 列。
只能向右或者向下走。
注意,如果行号和列数都是偶数,不能走入这一格中。
问有多少种方案。
输入格式
输入一行包含两个整数 n,mn,m。
输出格式
输出一个整数,表示答案。
数据范围
1≤n,m≤301≤n,m≤30
输入样例1:
3 4
输出样例1:
2
输入样例2:
6 6
输出样例2:
0
状态q[i][j],表示走到这个点的方案
ac代码:
#include<iostream>
const int N = 50;
int q[N][N];
int n,m;
using namespace std;
int main()
{
cin>>n>>m;
q[1][1] = 1;
for(int i = 1;i<=n;i++)
for(int j = 1;j<=m;j++){
if(i==1&&j==1)continue;
if(i%2||j%2){
q[i][j] = q[i-1][j] + q[i][j-1];//走到q[i][j]的方案数为i-1,j;i,j-1的和。
}
}
cout<<q[n][m];
return 0;
}