Jeo_dmy
码龄9年
求更新 关注
提问 私信
  • 博客:47,827
    47,827
    总访问量
  • 22
    原创
  • 163
    粉丝
  • 3
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2016-04-08

个人简介:985人工智能学院毕业菜鸟,愿意向所有的大佬学习请教探讨人工智能相关知识。

博客简介:

duyuan6949的博客

查看详细资料
个人成就
  • 获得363次点赞
  • 内容获得23次评论
  • 获得347次收藏
  • 代码片获得241次分享
  • 博客总排名56,635名
  • 原力等级
    原力等级
    2
    原力分
    167
    本月获得
    4
创作历程
  • 13篇
    2025年
  • 4篇
    2024年
  • 6篇
    2018年
成就勋章
TA的专栏
  • LLM
    1篇
  • 画境无界:AI绘画新手指南
    2篇
  • Python百宝箱—— 解锁生活的编程小妙招
    5篇
  • AI启航:努力成为高中同学都能理解的人工智能
    12篇
  • 目标检测
    2篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

创作活动更多

『技术文档』写作方法征文挑战赛

在技术的浩瀚海洋中,一份优秀的技术文档宛如精准的航海图。它是知识传承的载体,是团队协作的桥梁,更是产品成功的幕后英雄。然而,打造这样一份出色的技术文档并非易事。你是否在为如何清晰阐释复杂技术而苦恼?是否纠结于文档结构与内容的完美融合?无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

55人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

PPO(Proximal Policy Optimization)近端策略优化算法

我将用「扔飞镖游戏」作为例子,分步骤推导PPO的关键公式。即使只有高中数学基础,也能理解这个过程。
原创
发布博客 2025.02.11 ·
1083 阅读 ·
10 点赞 ·
0 评论 ·
16 收藏

从代码角度深入浅出讲解潜在扩散模型(LDM)

了解AI绘画的简单原理,先从LDM入手
原创
发布博客 2025.01.13 ·
1942 阅读 ·
25 点赞 ·
3 评论 ·
38 收藏

快速实现谷歌图片爬虫,轻松获取高清资源,附赠直接可用的爬虫工具!

便捷的谷歌图片爬虫工具
原创
发布博客 2025.01.13 ·
1258 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

百度检索图片爬虫exe软件,无需依赖任何环境,无需安装,加载解压缩,即可使用

发布资源 2025.01.10 ·
7z

爬虫竟然如此简单!只需一键下载,轻松获取百度千万张高清图片!附赠爬虫软件!

轻松获取千万张高清图片!附赠专业爬虫软件!
原创
发布博客 2025.01.10 ·
1407 阅读 ·
22 点赞 ·
0 评论 ·
5 收藏

人工智能进阶之入门神器ResNet:从菜鸟到大神的深度学习之旅

深度学习领域的里程碑式进展,被冠以“深度学习救星”
原创
发布博客 2025.01.10 ·
972 阅读 ·
30 点赞 ·
0 评论 ·
20 收藏

从零开始用 Python 写一个超酷的贪吃蛇游戏!

贪吃蛇游戏可以说是编程入门的“必修课”之一!它简单易懂,但又充满乐趣和挑战,适合初学者学习
原创
发布博客 2025.01.09 ·
443 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

ChatGPT入门之文本情绪识别:先了解LSTM如何处理文字序列

想象这样一个任务:你希望训练一个模型,它能说出一段文字的情感是“正面”还是“负面”,比如:“这部电影简直太棒了!” → 正面情感“糟糕透顶,浪费了两个小时的时间。” → 负面情感这就是一个典型的文本情感识别任务,而LSTM(长短期记忆网络)特别适合这种顺序依赖的数据。
原创
发布博客 2025.01.09 ·
1166 阅读 ·
33 点赞 ·
1 评论 ·
19 收藏

三分钟教你用Python把图片变成会动的表情包!

今天要跟大家分享一个超级实用的小工具 —— **如何用Python把静态图片变成动态GIF**!是不是听起来就很酷?让我们一起来看看吧!
原创
发布博客 2025.01.08 ·
1237 阅读 ·
11 点赞 ·
1 评论 ·
12 收藏

用Python绘制浪漫玫瑰动画:表白要有创意,代码比玫瑰更动人!无需python环境,可直接电脑上运行!

表白和浪漫不只是鲜花和烛光,代码的世界同样可以如此温柔动人。今天,我们一起用Python的魅力,为你的表达赋予新的生命。无需依赖python环境,直接window运行
原创
发布博客 2025.01.08 ·
1246 阅读 ·
33 点赞 ·
0 评论 ·
8 收藏

AI绘画:当你的想象力遇上人工智能的魔法

欢迎来到**"画境无界"**的第一篇博文!今天,我们要聊聊一个让艺术圈和科技圈都兴奋得睡不着觉的话题——**AI绘画**。如果你还不知道这是什么,或者觉得它离你很遥远,那就让我带你飞速入门,感受一下这场视觉革命的魅力!
原创
发布博客 2025.01.07 ·
756 阅读 ·
13 点赞 ·
0 评论 ·
14 收藏

(七)人工智能进阶之人脸识别:从刷脸支付到智能安防的奥秘,小白都可以入手的MTCNN+Arcface网络

还记得第一次用支付宝"刷脸"时的新奇感吗?或者被抖音的人脸特效逗乐的瞬间?这些有趣的应用背后,其实藏着一个精妙的AI世界。今天,就让我们开启一段奇妙的人脸识别技术探索之旅吧!
原创
发布博客 2025.01.07 ·
1680 阅读 ·
14 点赞 ·
0 评论 ·
24 收藏

(六)人工智能进阶之VGGNet:从菜鸟到大神的深度学习之旅

一个曾今在ImageNet竞赛中横空出世的深度学习网络 —— VGGNet!它不仅拿下了ILSVRC 2014比赛的亚军,还凭借其简单优雅的设计理念成为了深度学习界的"常青树"。
原创
发布博客 2025.01.06 ·
1014 阅读 ·
32 点赞 ·
0 评论 ·
17 收藏

(五)人工智能进阶:基础概念解释

网络模型就像是一个精密的流水线工厂,由多个车间(层)组成,每个车间都负责特定的加工任务。原材料(输入数据)在这条流水线上逐步加工,最终产出成品(预测结果)。
原创
发布博客 2025.01.02 ·
753 阅读 ·
28 点赞 ·
0 评论 ·
22 收藏

(二)当人工智能是一个函数,函数形式怎么选择?ChatGPT的函数又是什么?

让我们进一步探讨:面对不同的实际问题,应该如何选择合适的函数形式?广告推荐系统中的函数选择很有意思:想象一下,你正在刷抖音,突然看到一个运动鞋的广告。巧的是,你最近正在对比各种跑鞋,这个广告简直像是读懂了你的心!这就是智能广告推荐系统的魔力。
原创
发布博客 2024.12.31 ·
1565 阅读 ·
27 点赞 ·
0 评论 ·
25 收藏

(三)当人工智能是一个函数时,怎么去训练它?

人工智能本质上就是一个函数。那么今天,让我们更进一步:这个函数是怎么练成的?
原创
发布博客 2024.12.30 ·
740 阅读 ·
26 点赞 ·
0 评论 ·
18 收藏

(一)人工智能其实可以看成是一个函数

你有没有想过,人工智能究竟是什么?很多初学者会觉得它是一种神秘的黑科技,其实不然。如果我们换个角度思考,把人工智能看成一个“函数”,一切就会变得生动且易于理解。
原创
发布博客 2024.12.29 ·
1383 阅读 ·
11 点赞 ·
1 评论 ·
12 收藏

(四)通过BP神经网络来理解人工智能

BP神经网络,全称"误差反向传播神经网络",它模仿了人类大脑的神经元连接方式。首先你要接收信息(输入层)然后大脑处理这些信息(隐藏层)最后做出反应(输出层)如果反应错误,你会总结经验,下次改进(误差反向传播)如何构建一个可学习的神经网络如何通过误差反向传播来优化网络深度学习的基本原理虽然现代AI已经发展出了更复杂的架构,但BP的思想依然是其核心。正如牛顿力学是现代物理的基础一样,BP神经网络也是现代深度学习不可或缺的基石。
原创
发布博客 2024.12.27 ·
803 阅读 ·
16 点赞 ·
0 评论 ·
18 收藏

Faster R-CNN从原理详解(基于keras代码)

Faster R-CNN从原理详解(基于keras代码) 本文主要通过通过keras版本的代码来讲解:https://github.com/yhenon/keras-frcnn 原文链接:http://www.ee.bgu.ac.il/~rrtammy/DNN/reading/FastSun.pdf1.faster RCNN整个流程图 图1 faster r-cnn基...
原创
发布博客 2018.08.10 ·
11205 阅读 ·
3 点赞 ·
5 评论 ·
32 收藏

目标检测R-CNN系列总结

R-CNN --> FAST-RCNN --> FASTER-RCNN原理及相应概念解释 R-CNN:(1)输入测试图像;(2)利用selective search 算法在图像中从上到下提取2000个左右的Region Proposal;(3)将每个Region Proposal缩放(warp)成227*227的大小并输入到CNN,将CNN的fc7层的输出作为特征;...
转载
发布博客 2018.07.23 ·
361 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏
加载更多