miniconda搭建与迁移

1. 下载 miniconda

下载地址
执行以下命令安装:

mkdir -p /data/server/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O /data/server/miniconda3/miniconda.sh
bash /data/server/miniconda3/miniconda.sh -b -u -p /data/server/miniconda3
rm -rf /data/server/miniconda3/miniconda.sh

初始化运行环境:

/data/server/miniconda3/bin/conda init bash
/data/server/miniconda3/bin/conda init zsh
conda init powershell #激活windows

设置默认不启动conda

conda config --set auto_activate_base false

2. 配置 pip 镜像

vim .pip/pip.conf
[global]
index-url = http://mirrors.tencentyun.com/pypi/simple
trusted-host = mirrors.tencentyun.com

3. python 环境创建

创建

conda create -n modelscope python=3.8

激活

conda activate modelscope

退出

conda deactivate modelscope

删除

conda remove -n modelscope --all

列出环境

conda env list

查看GPU 版本

nvidia-smi

4. 迁移 conda 环境

下载打包工具

conda install -c conda-forge conda-pack

打包

conda pack -n modelscope -o modelscope.tar.gz

迁入

mkdir -p /data/server/anaconda3/envs/modelscope
tar -xzf /data/install/modelscope.tar.gz -C /data/server/anaconda3/envs/modelscope
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Miniconda和Docker是两种流行的工具,用于不同的目的。 Miniconda是一个轻量级的Anaconda发行版,Anaconda是一个Python和R的开源分发。Miniconda仅包含Python解释器和一些基本的包管理工具,而Anaconda则包含了预安装的大量科学计算和数据处理相关的包。使用Miniconda,我们可以轻松地创建和管理Python环境,以及通过它的包管理工具安装和更新所需的包。 Docker,另一方面,是一个用于开发、交付和运行应用程序的开源平台。它提供了类似于虚拟机的功能,允许在隔离的容器中运行应用程序,从而提高了应用程序的可移植性和可复制性。Docker采用了容器化技术,其中应用程序及其所有依赖项、运行时环境等都被打包到一个容器中,并以相对轻量和可移植的方式部署和运行。 将Miniconda和Docker结合使用可以带来一些好处。首先,使用Docker可以轻松地创建包含Miniconda的镜像。这意味着我们可以在不同的环境中快速部署经过配置和预安装的Miniconda环境。其次,通过将应用程序和其相关的依赖项打包到一个Docker容器中,我们可以确保应用程序在不同环境中具有一致的运行结果,从而避免了环境差异引起的问题。此外,使用Docker还可以简化应用程序的部署和迁移过程,提高开发和测试的效率。 综上所述,Miniconda是一个用于创建和管理Python环境的工具,而Docker是一个用于运行和部署应用程序的容器化平台。将二者结合使用可以提供更好的环境隔离和部署效率,适用于快速迁移和复用配置的应用程序。 ### 回答2: miniconda是一个面向数据科学家的Python发行版,它包括了conda包管理工具和Python解释器,并预先安装了许多常用的科学计算包。与传统的conda发行版相比,miniconda只包含最基本的组件,可以让用户根据自己的需求灵活地构建自己的科学计算环境。 docker是一种开源的容器化平台,可以帮助用户快速构建、发布和运行应用程序。通过使用docker容器,用户可以在不同的操作系统和平台上统一地运行应用程序,大大提高了移植性和可靠性。 结合miniconda和docker可以带来相当多的好处。通过在docker镜像中安装和配置miniconda,用户可以创建一个独立、可移植、可重复的Python环境。这意味着用户可以将其环境与其他团队成员、不同的服务器或不同的操作系统之间轻松共享,而不必担心环境配置的问题。 另一个好处是,在docker中使用miniconda可以更好地隔离环境。每个docker容器都具有自己的文件系统和依赖库,因此用户可以避免在不同的项目之间发生冲突,并确保项目的稳定性和一致性。 此外,使用docker还可以节省资源。miniconda安装包往往比较大,但通过docker,用户只需下载和部署一个docker镜像,就能在许多不同的容器中共享使用。 综上所述,miniconda和docker的结合可以提供灵活、可移植、隔离和高效的Python环境管理解决方案,特别适用于数据科学家和开发人员。 ### 回答3: Miniconda是一个轻量级的Anaconda发行版,适用于数据科学和机器学习开发者。它是一个Python环境和包管理工具,能够帮助用户简化配置和管理Python环境,并提供丰富的科学计算和数据处理包。 Docker是一种容器化平台,允许将应用程序和其依赖打包成一个独立的可执行单元,可以在不同的环境中运行。它提供了一种隔离和标准化的部署方式,使得应用程序的开发、测试和部署过程更加高效和可靠。 将Miniconda与Docker结合使用可以带来一些好处。首先,使用Docker可以创建一个包含Miniconda的镜像,使得Miniconda的安装和配置变得十分简单和可重复。通过使用Docker Image,可以确保在不同的环境中具有相同的Miniconda配置,从而消除了开发和部署环境差异导致的问题。 其次,使用Docker可以更好地管理和隔离不同的项目和工作环境。每个项目可以使用独立的Docker容器,而不会互相干扰。这样,我们可以轻松地创建、复制和销毁不同的环境,并且不会对其他环境产生影响。这对于多个项目、多个团队或者一个开发团队中的不同成员来说都是非常有用的。 最后,使用Docker和Miniconda可以更好地管理Python的依赖关系和版本控制。通过在Docker容器中安装和配置Miniconda,我们可以轻松地管理不同Python包的版本,并解决包之间的依赖问题。这极大地简化了项目的配置和管理过程。 综上所述,将Miniconda与Docker结合使用,可以提供简化配置和管理、隔离和标准化的部署、更好的依赖管理和版本控制等好处。这使得Miniconda和Docker成为了数据科学和机器学习开发者的理想工具。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值