数据分析实战
文章平均质量分 93
生信数据分析实战例子
名本无名
生物信息工程师,日常工作: Python 和 R 数据处理、分析及可视化等。还有其他。。。
展开
-
TCGA 数据分析实战 —— GSVA、ssGSEA 和单基因富集分析
前面,我们介绍过了差异基因的功能富集分析,今天,我们对这部分的内容作一些补充主要介绍一下GEVAssGSEA和单基因的富集分析。原创 2024-05-31 09:30:00 · 8085 阅读 · 0 评论 -
TCGA 数据分析实战 —— TMB 与免疫浸润联合分析
近年来,随着免疫检查点抑制剂的兴起,大大改变了传统的肿瘤治疗策略,尽管PD-L1和dMMR的检测都获得了FDA的批准,提高了免疫药物的响应和获益,但它们都有自身的不足。各种检测方法判定的PD-L1水平不一致率较高,dMMR在各种不同的癌种中的携带比例差异较大而免疫治疗的效果主要是免疫细胞对癌细胞特异性抗原的识别,那么从理论上来说,那些携带基因突变越多的癌症患者,癌细胞产生的新抗原越多,被免疫细胞识别的可能性更高。也就是说,肿瘤组织的突变负荷(TMB)越高,患者或许能从免疫治疗中获得更多的收益。TMB。原创 2024-05-31 09:30:00 · 1944 阅读 · 0 评论 -
TCGA 数据分析实战 —— 差异甲基化区域模体分析
DNA甲基化在许多细胞进程中扮演重要的角色,例如胚胎发育、基因印迹、X染色体失活和维持染色体稳定性。在哺乳动物中,DNA甲基化很少见,其产生位置分布在整个基因组中的确定的CpG序列中,但是却很少在CpG岛上发生甲基化。CpG岛(CGI)是富含GC碱基的短间隔DNA序列。这些CpG岛通常位于转录起始位置,它们的甲基化会导致基因沉默。DNA甲基化会抑制转录,因此,对DNA甲基化的研究对于理解癌症中调控基因网络至关重要。所以,差异甲基化区域(DMR)的检测有助于我们研究调控基因网路。原创 2024-05-30 09:13:19 · 1533 阅读 · 0 评论 -
TCGA 数据分析实战 —— 富集分析
通常,在识别完了差异基因之后,都会对差异基因进行功能富集,来获取差异基因参与的潜在生物学功能通路或生物学进程,有助于理解基因之间的作用关系以及发现基因在癌症发生发展过程中发挥的作用。通路,通常是一些已知的功能相关的基因集合,而我们常说的基因集合,一般是忽略了基因之间互作关系的通路。最常见的通路富集,是使用GO和KEGG数据库中预定义的生物学通路。原创 2024-05-30 09:12:31 · 1605 阅读 · 0 评论 -
TCGA 数据分析实战 —— 突变及拷贝数分析
在介绍完的查询下载和数据分析功能之后,我们简单展示几个示例,来练练手,加深对这个包的理解和使用我们主要从基因组、转录组和表观组3个维度分别举例来进行说明。原创 2024-05-29 10:10:48 · 4189 阅读 · 0 评论 -
TCGA 数据分析实战 —— 差异基因
数据进行差异表达分析的包,它的线性模型和差异表达函数可以应用于任何基因表达定量技术,也包括定量。包集成了很多功能,包括数据的读取、预处理(如背景矫正、组内或组件标准化等)和差异表达分析。不仅可以应用在基因水平,也可以在外显子、转录本水平进行差异分析,我们以基因水平为例。数据进行差异表达分析,也可以对其他芯片类型的数据进行分析,如。该算法的核心是使用负二项广义线性模型来检验基因表达的差异。等数据进行差异表达分析,任何从基因组特征上产生的。的几个函数来过滤低表达的基因,然后进行。来进行差异表达分析。原创 2024-05-29 10:37:09 · 3537 阅读 · 0 评论
分享