单细胞转录组
文章平均质量分 95
名本无名
生物信息工程师,日常工作: Python 和 R 数据处理、分析及可视化等。还有其他。。。
展开
-
单细胞转录组 —— simpleaf 原始数据处理
是一个快速、准确且内存节约的单细胞和单核数据处理工具。Simpleaf是用Rust编写的程序,它提供了一个统一且简化的界面,用于通过alevin-fry流程处理一些最常见的单细胞数据。原创 2024-10-09 19:09:21 · 910 阅读 · 0 评论 -
单细胞转录组 —— STARsolo 原始数据处理
前面我们已经介绍了几种原始数据处理工具,最后再介绍一种多平台兼容的快速定量工具 ——STARsolo。主要使用的还是STAR比对软件,只是增加了更多对单细胞数据的处理,不同平台数据的差异,也只是在参数设置上。原创 2024-10-09 19:08:19 · 1427 阅读 · 0 评论 -
单细胞转录组 —— kb-python 原始数据处理
是一种用于预处理scRNA-seq数据的工作流程。readsUMIreadsreads使用有以下几点优势RNAsnRNA-seq10xinDropsDropseqCITE-seqREAP-seqMULTI-seqClicktagsQC。原创 2024-10-09 19:00:53 · 910 阅读 · 0 评论 -
单细胞转录组 —— Cell Ranger 原始数据处理
我们前面介绍了单细胞转录组原始数据的处理步骤,以及每一步中涉及的各种问题及解决方案。下面我们将介绍几个常用的原始数据的处理流程。原创 2024-10-09 19:00:03 · 1790 阅读 · 0 评论 -
单细胞转录组 —— 原始数据处理
文章参考中原始数据处理部分。我们这里所说的原始数据处理涉及多个步骤,从测序仪下机产生的BCL文件到原始的FASTQ文件,再到序列比对,最后以reads计数矩阵结束。计数矩阵代表了每个细胞中每个基因所产生的不同分子数量的估计值,并可以根据每个分子推测的剪接状态对数据进行分层。整体流程如下图这个计数矩阵是所有下游分析的起点,包括数据归一化、整合和过滤方法,以及推断细胞类型、发育轨迹和表达动态的方法等。因此对该计数矩阵进行稳健而准确的评估,是实现准确可靠的后续分析的基础和关键步骤。原创 2024-06-19 11:14:57 · 2084 阅读 · 0 评论 -
单细胞转录组 —— 测序介绍
RNA测序主要有两种方法:一种是对来自不同细胞的混合RNA进行测序(),另一种是对单个细胞的转录组进行测序(在大多数情况下,混合细胞的RNA-seq比复杂的单细胞测序更便宜、更容易。得到的是所有细胞的平均表达谱,这通常更容易分析,但也会隐藏很多信息,如细胞表达的异质性。有些药物或扰动可能只会影响特定的细胞类型或细胞类型之间的相互作用。例如,耐药的肿瘤细胞会导致癌症复发,即使是在培养的细胞上也很难通过简单的来识别。所以,需要在单细胞水平上研究基因的表达,来揭示这种关系。但是,scRNA-seq。原创 2024-06-18 09:34:23 · 1397 阅读 · 0 评论
分享