duncan

目标不会嫌来的太晚,坚持就一定会成功。

hive常见优化问题汇总

一、总体思想 http://blog.csdn.net/u011750989/article/details/12024301 1、让服务器尽可能的多做事情,榨干服务器资源,以最高系统吞吐量为目标 再好的硬件没有充分利用起来,都是白扯淡。 比如: (1)  启动一次job尽可能的多做...

2016-04-11 11:20:36

阅读数 55

评论数 0

hive常见优化问题汇总

有充分利用起来,都是白扯淡。 比如: (1)  启动一次job尽可能的多做事情,一个job能完成的事情,不要两个job来做  通常来说前面的任务启动可以稍带一起做的事情就一起做了,以便后续的多个任务重用,与此紧密相连的是模型设计,好的模型特别重要. (2) 合理设置reduce个数 re...

2016-04-11 11:20:36

阅读数 35

评论数 0

hive-数据倾斜解决详解

hive在跑数据时经常会出现数据倾斜的情况,使的作业经常reduce完成在99%后一直卡住,最后的1%花了几个小时都没跑完,这种情况就很可能是数据倾斜的原因,解决方法要根据具体情况来选择具体的方案   1、join的key值发生倾斜,key值包含很多空值或是异常值 这种情况可以对异常值赋...

2016-04-11 11:11:11

阅读数 46

评论数 0

hive-数据倾斜解决详解

2016-04-11 11:11:11

阅读数 12

评论数 0

抽样类型详细说明

抽样的类型  根据抽取对象的具体方式,人们把抽样分为许多不同的类型。总的来说,各种抽样都可以归为概率抽样与非概率抽样两大类。这是两种有着本质区别的抽样类型。概率抽样是依据概率论的基本原理,按照随机原则进行的抽样,因而它能够避免抽样过程中的人为误差,保证样本的代表性;而非概率抽样则主要是依据研究...

2016-03-24 10:41:11

阅读数 139

评论数 0

抽样类型详细说明

有着本质区别的抽样类型。概率抽样是依据概率论的基本原理,按照随机原则进行的抽样,因而它能够避免抽样过程中的人为误差,保证样本的代表性;而非概率抽样则主要是依据研究者的主观意愿、判断或是否方便等因素来抽取对象,它不考虑抽样中的等概率原则,因而往往产生较大的误差,难以保证样本的代表性。  概率抽样与非...

2016-03-24 10:41:11

阅读数 19

评论数 0

hive配置详解

hive中有许多配置将帮助我们提升性能,其详细配置如下:   1、hive.auto.convert.join  默认值为true 是否根据输入小表的大小,自动将 Reduce 端的 Common Join 转化为 Map Join,从而加快大表关联小表的 Join 速度。    2...

2016-03-18 10:48:52

阅读数 20

评论数 0

hive配置详解

n Join 转化为 Map Join,从而加快大表关联小表的 Join 速度。    2、hive.groupby.skewindata 默认值为false 用于决定 group by 操作是否支持倾斜的数据,即将数据进行负载均衡。原理是,在Group by中,对一些比较小的分区进行合并。...

2016-03-18 10:48:52

阅读数 4

评论数 0

hive打开调试信息方法

当用hive查询时,有时可能会报错,当要查看详细的报错信息时,可以打开调试状态, 其设置方法如下:   hive -hiveconf hive.root.logger=DEBUG,console

2016-03-17 17:53:26

阅读数 21

评论数 0

hive打开调试信息方法

2016-03-17 17:53:26

阅读数 5

评论数 0

set hive.groupby.skewindata与数据倾斜

hive和其它关系数据库一样,支持count(distinct)操作,但是对于大数据量中,如果出现数据倾斜时,会使得性能非常差,解决办法为设置数据负载均衡,其设置方法为设置hive.groupby.skewindata参数   hive (default)> set h...

2016-03-16 10:03:57

阅读数 132

评论数 0

set hive.groupby.skewindata与数据倾斜

设置方法为设置hive.groupby.skewindata参数   hive (default)> set hive.groupby.skewindata; hive.groupby.skewindata=false   默认该参数的值为false,表示不启用,要...

2016-03-16 10:03:57

阅读数 56

评论数 0

hive:[Fatal Error] Operator FS_14 (id=14): Number of dynamic partitions exceeded

向动态分区时,报错:hive:[Fatal Error] Operator FS_14 (id=14): Number of dynamic partitions exceeded hive.exec.max.dynamic.partitions.pernode.   其原因是动态分区数太多...

2016-03-10 10:44:47

阅读数 18

评论数 0

hive:[Fatal Error] Operator FS_14 (id=14): Number of dynamic partitions exceeded

2016-03-10 10:44:47

阅读数 9

评论数 0

Hive中Join的原理和机制

Hive中Join的原理和机制 笼统的说,Hive中的Join可分为Common Join(Reduce阶段完成join)和Map Join(Map阶段完成join)。本文简单介绍一下两种join的原理和机制。 1 Hive Common Join 如果不指定MapJoin或者不符合Ma...

2016-01-22 20:36:34

阅读数 23

评论数 0

Hive中Join的原理和机制

2016-01-22 20:36:34

阅读数 20

评论数 0

hive 随机抽样

1. Random sampling 使用RAND()函数和LIMIT关键字来获取样例数据。使用DISTRIBUTE和SORT关键字来保证数据是随机分散到mapper和reducer的。ORDER BY RAND()语句可以获得同样的效果,但是性能没这么高。 --Syntax:     ...

2016-01-22 20:23:47

阅读数 348

评论数 0

hive 随机抽样

2016-01-22 20:23:47

阅读数 62

评论数 0

hive 分组取每个组中的top N条记录

2016-01-22 10:00:08

阅读数 11

评论数 0

hive 客户端查询报堆内存溢出解决方法

hive> select * from t_test where ds=20150323 limit 2; OK Exception in thread "main" java.lang.OutOfMemoryError: Java heap space   问题...

2016-01-04 10:30:57

阅读数 4981

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭