“2018中国AI英雄风云榜”年度人物榜:“AI天才”何恺明

640?wx_fmt=png


编者按:2018年12月28日,由网易智能、清华大学数据科学研究院和24家评审机构共同评出的“2018中国AI英雄风云榜”年度人物榜单揭晓,10位人工智能领域的从业者获奖。其中,何恺明以扎实的学术成就和多数投票获得了本次评选的技术新锐奖。


640?wx_fmt=jpeg


提到何恺明,很多学术界的人都将其视为“天才型”的人物。从“高考满分状元”,到CVPR最佳论文奖“首位华人得主”,再到震惊学界的“深度残差网络”,这位“80后”青年才俊有着诸多传奇故事。


1. 广州:高考状元,少年天才


何恺明从小在广州长大,很早就展示了自己“天才”的一面。在广州执信中学就读时获得过全国物理竞赛和省化学竞赛的一等奖。


从网络报道看,执信中学老师当时对何恺明的描述是“性格比较内向,话不多,目标明确,从小就立志上清华大学”,“学习能力非常强,管得住自己,是一个学者型学生”。


2003年,全国的高考时间第一次提前到6月7日,但是对于何恺明来说,他已经在5月份拿到了保送清华的资格。


但是,何恺明仍然决定参加高考,测试自己实力到底如何。


高考结果出炉以后,何恺明获得了满分900分的成绩,成为当年广东省9位满分状元之一。当时的高考颇受人们的重视,何恺明也成为媒体们争相报道的对象。


640?wx_fmt=jpegwebp


2. 北京:13年学霸之路,两次CVPR大奖


2003年9月,顶着“保送”和“广东省理科高考状元”的光环进入清华大学以后,何恺明却放弃了原本保送的机械工程及其自动化专业,转而选择基础科学班。


说到清华大学的基础科学班,这个项目于1998年开始设立,被看做是培养数学、物理等基础学科人才的尖子班,不过课程压力比较大,需要同时学习数学系、物理系的大部分基础课程。


2007年,还未毕业的何恺明进入微软亚洲研究院(MSRA)实习,处于对计算机图形图像课程的兴趣,他选择加入了MSRA视觉计算组,其实习导师便是现任旷视科技首席科学家的孙剑。而当时MSRA视觉计算组负责人是CV领域的大师汤晓鸥。


xmwebp


何恺明自此正式进入CV(计算机视觉)领域。


在实习的头一年里,何恺明做了一些计算机视觉相关课题,虽然都失败了,但他接触到了很多新的知识,也真正进入到计算机视觉领域的研究上。随后,何恺明对于去雾算法的研究大获成功,经过反复的推敲和打磨之后,何恺明的论文获得了计算机视觉领域国际顶级会议CVPR(IEEE计算机视觉与模式识别大会)2009最佳论文奖。


这一奖项,是CVPR创办25年以来,首次有华人乃至亚洲学者获此殊荣,这也让论文的第一作者何恺明在CV领域一举成名。


640?wx_fmt=jpegwebp

CVPR 2009最佳论文截图,作者是何恺明、孙剑、汤晓鸥


在获奖前后,何恺明进入香港中文大学攻读研究生,师从AI大师级人物汤晓鸥。推测来看,师生二人在微软就已结识。不过,攻读研究生期间,何恺明仍然在微软亚洲研究院参与相关研究。


640?wx_fmt=jpeg

何恺明(右)与导师汤晓鸥


2011年博士毕业后,何恺明正式加入微软亚洲研究院工作。


后来,何恺明与同事开发了深度残余网络(ResNets)。在2015年的ImageNet图像识别大赛中,何恺明和他的团队用“图像识别深度差残学习”系统,一举击败谷歌、英特尔、高通等业界团队,荣获第一。成为举世闻名的152层深度残差网络ResNet-152。


事实证明,ResNets目前已经成为计算机视觉领域的流行架构,同时也被用于机器翻译、语音合成、语音识别和AlphaGo的研发上。


640?wx_fmt=jpeg

CVPR 2016最佳论文


在2016年的CVPR上,何恺明凭借ResNets论文再次获得最佳论文奖,也是目前鲜有的一人两次获得CVPR最佳论文奖的学者。


2016年8月,在工作5年之后,何恺明离开了微软亚洲研究院,飞往美国,加入了Facebook AI研究院(FAIR)。


640?wx_fmt=png


3. 硅谷:新的篇章


加入FAIR之后,何恺明开启了新的人生。他在Facebook上写到,“2016年我的人生道路有了重大改变,还结交了很多新朋友。”


2017年3月,何恺明和同事公布了其最新的研究Mask R-CNN,提出了一个概念上简单、灵活和通用的用于目标实例分割(object instance segmentation)框架,能够有效地检测图像中的目标,同时还能为每个实例生成一个高质量的分割掩码(segmentation mask)。同年,这篇《Mask R-CNN》论文获得另一个计算机视觉顶级会议ICCV最佳论文奖,何恺明依然是第一作者。与此同时,何恺明还获得了最佳学生论文奖(第四作者),论文是《Focal Loss for Dense Object Detection》。


640?wx_fmt=png

Mask R-CNN示例


640?wx_fmt=jpeg

ICCV 2017最佳论文


640?wx_fmt=jpeg

ICCV 2017最佳学生论文


2018年1月,FAIR宣布开源自己的顶级物体检测研究平台 Detectron,为广大研究人员提供灵活、快速的模型实现和评估途径。这个平台中就集合了何恺明与其同事发布的多篇论文成果。


2018年6月,第31届CVPR在美国盐湖城召开,何恺明获得了PAMI青年研究者奖。


2018年11月,何恺明等人在arxiv上又挂出一篇重磅论文《重新思考“ImageNet预训练”》,称ImageNet 预训练却并非必须。论文显示,何恺明和其同事使用随机初始化的模型,不借助外部数据,取得了不逊于COCO 2017冠军的结果,再次引发业内关注。


故事还在继续....


不久前的1月10号,何恺明团队在最新的论文《Panoptic Feature Pyramid Networks》中提出“全景FPN”,聚焦于图像的全景分割任务。他们结合 Mask R-CNN 与 FCN 构建出一种新型的全景分割模型,设计了单一的网络Panoptic FPN。该方法可能成为全景分割研究的强大基线。


4. 后记


640?wx_fmt=jpeg


何恺明很少接受媒体采访,当网易智能联系到这位最牛的学者时,美国已近圣诞节。但何恺明回复称自己仍在繁忙的工作,并表示非常荣幸能够获得此项荣誉。希望何恺明老师有机会能回到国内,与中国行业进行交流。再次祝福这位天才型的AI学者工作顺利,猪年快乐!(AI英雄风云榜评审会2019年1月于北京)


来源:网易智能


本文部分人物经历素材引自大数据文摘、SME情报员、机器之心等,网易智能进行了核实


640?wx_fmt=jpeg640?wx_fmt=jpeg

没有更多推荐了,返回首页