最近用到了根据经纬度计算地球表面两点间距离的公式,然后就用JS实现了一下。
计算地球表面两点间的距离大概有两种办法。
第一种是默认地球是一个光滑的球面,然后计算任意两点间的距离,这个距离叫做大圆距离(The Great Circle Distance)。
公式如下:
使用JS来实现为:
var
EARTH_RADIUS
=
6378137.0
;
//
单位M
var PI = Math.PI;
function getRad(d){
return d * PI / 180.0;
}
/* *
* caculate the great circle distance
* @param {Object} lat1
* @param {Object} lng1
* @param {Object} lat2
* @param {Object} lng2
*/
function getGreatCircleDistance(lat1,lng1,lat2,lng2){
var radLat1 = getRad(lat1);
var radLat2 = getRad(lat2);
var a = radLat1 - radLat2;
var b = getRad(lng1) - getRad(lng2);
var s = 2 * Math.asin(Math.sqrt(Math.pow(Math.sin(a / 2),2) + Math.cos(radLat1)*Math.cos(radLat2)*Math.pow(Math.sin(b / 2 ), 2 )));
s = s * EARTH_RADIUS;
s = Math.round(s * 10000 ) / 10000.0;
return s;
}
var PI = Math.PI;
function getRad(d){
return d * PI / 180.0;
}
/* *
* caculate the great circle distance
* @param {Object} lat1
* @param {Object} lng1
* @param {Object} lat2
* @param {Object} lng2
*/
function getGreatCircleDistance(lat1,lng1,lat2,lng2){
var radLat1 = getRad(lat1);
var radLat2 = getRad(lat2);
var a = radLat1 - radLat2;
var b = getRad(lng1) - getRad(lng2);
var s = 2 * Math.asin(Math.sqrt(Math.pow(Math.sin(a / 2),2) + Math.cos(radLat1)*Math.cos(radLat2)*Math.pow(Math.sin(b / 2 ), 2 )));
s = s * EARTH_RADIUS;
s = Math.round(s * 10000 ) / 10000.0;
return s;
}
这个公式在大多数情况下比较正确,只有在处理球面上的相对点的时候,会出现问题,有一个修正的公式,因为没有需要,就没有找出来,可以在wiki上查到。
当然,我们都知道,地球其实并不是一个真正的圆球体,而是椭球,所以有了下面的公式:
/* *
* approx distance between two points on earth ellipsoid
* @param {Object} lat1
* @param {Object} lng1
* @param {Object} lat2
* @param {Object} lng2
*/
function getFlatternDistance(lat1,lng1,lat2,lng2){
var f = getRad((lat1 + lat2) / 2);
var g = getRad((lat1 - lat2) / 2);
var l = getRad((lng1 - lng2) / 2);
var sg = Math.sin(g);
var sl = Math.sin(l);
var sf = Math.sin(f);
var s,c,w,r,d,h1,h2;
var a = EARTH_RADIUS;
var fl = 1 / 298.257;
sg = sg * sg;
sl = sl * sl;
sf = sf * sf;
s = sg * ( 1 - sl) + ( 1 - sf) * sl;
c = ( 1 - sg) * ( 1 - sl) + sf * sl;
w = Math.atan(Math.sqrt(s / c));
r = Math.sqrt(s * c) / w;
d = 2 * w * a;
h1 = ( 3 * r - 1 ) / 2 / c;
h2 = ( 3 * r + 1 ) / 2 / s;
return d * ( 1 + fl * (h1 * sf * ( 1 - sg) - h2 * ( 1 - sf) * sg));
}
这个公式计算出的结果要比第一个好一些,当然,最后结果的经度实际上还取决于传入的坐标的精度。