集合间的操作
我们可以对现有的集合进行一些标准操作,从而得到更多的集合。这些操作有:
- ∪ \cup ∪:并集;
- ∩ \cap ∩:交集;
- ∖ \setminus ∖:差集;
- ∐ \coprod ∐:不相交的并;
- × \times ×:笛卡尔积;
- 还有“等价关系的商集”。
大多数操作对于读者来说都已经很熟悉了:例如,
{
1
,
2
,
4
}
∪
{
3
,
4
,
5
}
=
{
1
,
2
,
3
,
4
,
5
}
\{1,2,4\}\cup\{3,4,5\}=\{1,2,3,4,5\}
{1,2,4}∪{3,4,5}={1,2,3,4,5}还有
{
1
,
2
,
4
}
∖
{
3
,
4
,
5
}
=
{
1
,
2
}
\{1,2,4\}\setminus\{3,4,5\}=\{1,2\}
{1,2,4}∖{3,4,5}={1,2}用文氏图可以表示如下:

有些操作的写法在逻辑上比较简介,比如,
s
∈
S
∩
T
⟺
(
s
∈
S
a
n
d
s
∈
T
)
s\in S\cap T \Longleftrightarrow (s \in S\ {\rm and}\ s \in T)
s∈S∩T⟺(s∈S and s∈T)两个集合
S
S
S和
T
T
T是不相交的(
d
i
s
j
o
i
n
t
disjoint
disjoint)如果有
S
∩
T
=
∅
S\cap T=\empty
S∩T=∅,也就是说没有元素同时存在于这两个集合中。
子集 T T T在集合 S S S中的补( c o m p l e m e n t complement complement)是差集 S ∖ T S\setminus T S∖T,包含了不在集合 T T T中的所有 S S S的元素。举个例子,偶数集合在整数集合 Z \mathbb{Z} Z是奇数的集合。
像 ∐ \coprod ∐, × \times ×以及等价关系定义的商集略微有点mysterious,仔细的考虑它们是很有帮助的。我们将会以一种非常朴素的方式看待它们,在接触了更多的知识时再用更复杂的观点来审视。
解读
这些集合的操作:并,交还挺熟悉的;其他的我用的不算多,但也能理解。期待后面的好戏。
单词
- in a transparent way
- instructive: 富有教益的;增长知识的
- contemplate: 考虑;思量;思忖;考虑接受(发生某事的可能性);深思熟虑;沉思;苦思冥想
950

被折叠的 条评论
为什么被折叠?



