自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(83)
  • 收藏
  • 关注

原创 Vue3 官方文档翻译 Quick Start

引言原文地址: http://blog.duhbb.com/2022/02/11/translation-of-quick-start-in-vue-3-offiicial-doc/欢迎访问我的博客: http://blog.duhbb.com/Vue3 官方文档翻译 Quick Start使用构建工具Vue官方的构建工具是使用Vite,一个现在,轻量级以及非常非常快的前端构建工具.在线工具不需要本地安装什么东西,直接在浏览器中就帮你构建好了.本地工具前提:熟悉命令行安装Node.j

2022-02-11 11:43:54 317

原创 Vue 3.0 文档翻译 Introduction

引言原文地址: http://blog.duhbb.com/2022/02/11/translation-of-introduction-in-vue-3-offiicial-doc/欢迎访问我的博客: http://blog.duhbb.com/Vue 3.0 文档翻译 Introduction什么是Vue?Vue的发音和view相似,是一个构建用户界面的Java框架. 在HTML,CSS和JavaScript的基础上提供了一个声明式(declarative)以及基于组件(component-b

2022-02-11 11:18:40 609

原创 关于MySQL 8.0数据库表名大小写的问题

原文地址: http://blog.duhbb.com/2022/02/09/on-mysql-low-case-table-names/欢迎访问我的博客: http://blog.duhbb.com/引言今天导库, 启动项目, 结果尼玛项目起不来, changelog疯狂执行, 正常情况下不会出现这样的. 找了好半天原因才发现库中存在同名但是大小写不一致的表名.背景知识bug: https://bugs.mysql.com/bug.php?id=90695MySQL 8.0 新增了data d

2022-02-09 17:26:50 4156

原创 debian下编译安装redis并加入到systemd启动管理

原文地址: http://blog.duhbb.com/2022/02/09/compile-and-install-redis-debian-and-add-to-systemd/欢迎访问我的个人博客: http://blog.duhbb.com/下载wget https://download.redis.io/releases/redis-6.2.6.tar.gz编译并安装安装libsystemd-devapt-get install libsystemd-dev编译并安装redis

2022-02-09 16:54:10 1915

原创 休息日的生活

欢迎访问我的博客: http://blog.duhbb.com原文: http://blog.duhbb.com/2022/02/06/weekend-day-life引言流水日记来了。早上起来先喝一大杯温开水。进厨房。锅里烧热水,准备煮豆丝。热水壶烧两壶开水。豆丝+肉丸子+大白菜, 佐料: 盐+胡椒.蛋白质: 煎活着煮两个鸡蛋, 喝一瓶200ml的牛奶.吃完了, 就准备洗碗, 然后排便, 再喝一大杯温开水.然后就是带娃, 啊, 多么朴实无华!中午中午得自己炒菜: 两个人一荤一

2022-02-06 10:24:37 172

原创 mac安装jdk1.8

原文地址:mac安装jdk1.8欢迎访问我的个人博客: keep coding下载链接: https://pan.baidu.com/s/1xQr6_9_7lFNtSes7HsKveA密码: edme路径:/Library/Java/JavaVirtualMachines/jdk1.8.0_211.jdk编辑环境配置文件:$ open -e .bash_profile加入如下内容:JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8.0_

2022-02-06 09:39:10 1258

原创 php日期操作

原文地址:http://blog.meoo.info/2022/02/01/php-date-operation/欢迎访问我的博客:http://blog.meoo.info基本使用方法PHP Date() 函数把时间戳格式化为更易读的日期和时间。date(format, timestamp)format: 必需。规定时间戳的格式。timestamp: 可选。规定时间戳。默认是当前时间和日期。下面列出了一些常用于日期的字符:d - 表示月里的某天(01-31)m - 表示月(01-

2022-02-02 07:45:09 213

原创 前端如何生成二维码

欢迎访问的我的博客:http://blog.meoo.info原文地址:http://blog.meoo.info/2022/01/10/qr-code-generation-in-front-end/npm的qrCode组件方案描述原文:https://blog.csdn.net/baiqiangdoudou/article/details/100186071npm install qrcodejs2 --save实践为了使用这个包还得学一下webpack的基本使用,webpack如何打包

2022-01-10 14:47:26 14291

原创 监控文件的网页工具

欢迎访问我的个人博客:我心永恒原文地址:监控文件的网页工具想开发个小工具,供工作使用,大概思路是这样: 做一个网页,里面有一个文本框,一个上传按钮,一个下拉框。点击上传按钮,从本地选择txt文本,在下拉框设置自动刷新的时间(实时、1分钟、10分钟),本地文本就会自动上传到文本框里。实现:前端html文件如下所示:<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8">

2022-01-09 12:10:09 436

原创 arthas使用总结

引言这里记录一下我在使用arthas排查现场问题时,使用的几个主要命令,怕自己忘了,写下来到时候可以参考。我的个人博客:我心永恒原文地址:arthas使用总结查看类加载的信息sc -d <ClassName>参数名称参数说明class-pattern类名表达式匹配method-pattern方法名表达式匹配[d]输出当前类的详细信息,包括这个类所加载的原始文件来源、类的声明、加载的ClassLoader等详细信息。 如果一个类被多个ClassL

2022-01-09 09:21:47 5219

原创 golang的hello-world以及non-main package的trouble-shooting

goland上编写golang的hello-world以及问题排查。

2022-01-08 20:48:59 1119

原创 Redis 持久化的点点滴滴

带着问题从一下几个方面来记忆 :不同持久化所采用的原理是什么?什么时候会执行持久化?根据原理推断出各自的优势和劣势?性能是否会丢数据持久化的恢复速度内存占用针对各自的劣势有什么解决方法?Redis 默认的持久化策略是什么?如果 rdb 和 aof 的持久化文件同时都在的话, Redis 会如何恢复?什么是混合持久化?什么是重写?能手动重写吗?参考https://www.cnblogs.com/chenliangcl/p/7240350.htmlhttps://w.

2020-08-27 21:39:16 84

原创 SpringBoot 2.3.3 + Redis + Sentinel 测试

引言本文主要是测试 SpringBoot 2.3.3 + Redis + Sentinel, 记录一些遇到的坑.环境配置完成本测试需要的清单如下 :开发主机, 一台Linux 虚拟机, 一台SpringBoot 2.3.3 版本Redis, 有 sentinel 的都可以基本架构Linux 服务器上运行 6 个进程, 分别是 3 个 redis-server 和 3 个 redis-sentinel. redis-sentinel 只是 redis-server 一种特殊工作模式. 如

2020-08-27 12:19:50 772

原创 Algebra:Chapter 0 - 阅读进度记录

进度记录周一周二周三周四周五周六周日XXXX2020.07.30 群的定义和性质41,42,43

2020-07-30 09:21:51 305

原创 Algebra:Chapter 0 - 群的定义

群的定义1.1. Groups and groupoids.Joke 1.1. 定义:一个群是具有单个对象的groupoidgroupoidgroupoid。这实际上是一个完美的viable定义,由于之前已经在Example I.4.6中定义过了groupoids;但是大多数的数学家会发现用这个方式介绍群显得ludicrous,或者他们至少会礼貌地表达出这么做会造成pedagogical effectiveness的怀疑。为了redeem他自己,作者将会立即解析这个定义,为什么他会这么说。如果∗*∗是

2020-07-30 09:08:30 773

原创 Algebra:Chapter 0 - Groups, first encounter

Groups, first encounter在这章中我们会介绍群(groups),我们观察它们构成了一个范畴(被称为Grp\mathsf{Grp}Grp),并且我们研究的是这个范畴的一般特性:这个范畴中的monomorphisms和epimorphisms是什么?对于群来说等价关系和商意味着什么?“分解定理”在Grp\mathsf{Grp}Grp还成立吗?以及其他类似的问题。在第三章,我们将会在一定程度上熟悉ringsringsrings和modulesmodulesmodules。对范畴Grp\ma

2020-07-29 15:27:07 295

原创 Algebra:Chapter0 - 5. Universal properties

Universal properties第三节的抽象例子让读者留下了印象,可以从同一个基本的想法产生大量的minute variations,并不用breaking any new ground。这个可能很有趣,但是为什么我们要探索这个territory呢?范畴提供了丰富的统一语言,对于代数中的构造和其他领域中给了我们一双鹰眼。在这个课程中,在持续出现满足universal properties的构造时显得愈发清晰。例如,我们将会看到积和不相交的并可以通过某些universal properties刻画

2020-07-29 14:09:55 467

原创 Algebra:Chapter 0 - 4. Morphisms

4. Morphisms在Set\mathsf{Set}Set中我们关注了某些函数(injective,surjective,bijective),在任意一个范畴上对态射做同样的事情很有意义。读者应该注意到对元素的动作定义的态射并不是一个一般性的设置,因为一个任意的范畴的对象不一定有元素。这就是为什么我们要分析injectivity的原因。4.1. Isomorphisms.令C\mathsf{C}C是一个范畴。Define 4.1. 一个态射f∈Hom(A,B)f\in \mathrm{Hom}

2020-07-28 17:31:42 564

原创 Algebra:Chapter0 - 范畴练习

范畴练习

2020-07-28 11:06:00 327

原创 Algebra:Chapter0 - 3.2. Examples.

3.2. Examples.读者应该注意到范畴中90%的符号定义都是用来解释态射的性质;态射是范畴中的一个十分重要的部分。然而,心理上很难避免从范畴对象的角度来想范畴:例如,有人可能会想“集合的范畴”。关键在于通常“态射”才是应该考虑的东西:如果一个人在谈论集合,一个人如果说态射而不是集合的函数会意味着什么呢?Example 3.2现在可以很清楚的明白集合(作为对象),以及集合上的函数(作为态射),构成了一个范畴;如果不是的,读者应该在这里停下来而不是继续往前看,直到这个断言消除了残存的疑惑。对于这

2020-07-27 17:08:05 385

原创 Algebra:Chapter0 - 3.1. Definition.

3.1. Definition.范畴的定义一开始看上去有点复杂,但是它的要点可以很快归纳:范畴包括了一些对象的集合(collection)以及这些对象之间的态射(morphisms),同时满足一些条件。读者会注意到我避免写“a set of objects”,而是用了更一般的collection。对象的collection因为包含太广,导致构不成一个集合(set)。但是也有办法处理它,只要用去个名字叫classclassclass就行了。存在所有sets的class(同时也会有classes来处理gro

2020-07-27 12:53:44 237

原创 Algebra:Chapter0 - 3. Categories

3. Categories范畴语言被Norman Steenrod亲切地称为abstract nonsenseabstract\ nonsenseabstract nonsense。这个属于本质上十分精确但是并没有贬低的意思:范畴中的无意义的意思指的是它们关心的是结构,而不是它们所代表对象的意义。它的重点不是你遇到的具体集合是什么,而是这个集合和其他集合直接的关系。更糟糕(更好的)的是,重点不是放在集合和集合之间的函数,而是研究事物以及事物转变,不会明确说明这些东西是什么:它们可能是集

2020-07-27 11:55:26 170

原创 Algebra:Chapter0 - 函数练习题

函数练习题

2020-07-27 11:28:21 301

原创 Algebra:Chapter0 - 2.9. Clarification.

2.9. Clarification.

2020-07-27 11:27:28 219

原创 Algebra:Chapter0 - 2.8. Canonical decomposition.

2.8. Canonical decomposition.

2020-07-27 11:26:56 267

原创 Algebra:Chapter 0 - 2.7. Basic examples.

2.7. Basic examples.

2020-07-27 11:26:24 110

原创 Algebra:Chapter0 - 2.6. Monomorphisms and epimorphisms.

2.6. Monomorphisms and epimorphisms.

2020-07-27 11:25:50 203

原创 Algebra:Chapter0 - 2.5. Injections, surjections, bijections: Second viewpoint.

2.5. Injections, surjections, bijections: Second viewpoint.待续…

2020-07-27 11:25:10 228

原创 Algebra:Chapter0 - 2.4. Injections, surjections, bijections.

2.4. Injections, surjections, bijections.待续…

2020-07-27 11:23:55 298

原创 Algebra:Chapter0 - 2.3. Composition of functions.

2.3. Composition of functions.待续…

2020-07-27 11:23:12 228

原创 Algebra:Chapter0 - 例子:Multisets,指标集

例子:Multisets,指标集‘multisets’在1.1节中简要地提及了一下,它是一个简单的记号,可以通过函数方法来正规化。一个multiset可以通过一个给定的从集合AAA到正整数N∗\mathbb{N}^{*}N∗的函数来定义。如果m:A→N∗m:A\rightarrow \mathbb{N}^{*}m:A→N∗是这样的一个函数,对应的multiset包含了元素a∈Aa\in Aa∈A,每一个出现m(a)m(a)m(a)次。就是multisetmultisetmultiset {a,a,a,b,

2020-07-27 11:21:52 598

原创 Algebra:Chapter 0 - 集合间的函数 - 定义

集合间的函数定义对于后面出现的结构,我们要理解结构的类型和给定的结构之间可能的交互方式。集合之间的交互是通过函数(functionsfunctionsfunctions)进行的。从集合AAA到集合BBB上的函数可以用一种“动态的”方式,就像“从AAA到BBB的路”一样。就像关系一样,可以很直接的给出正规化的记号并不需要很深的含义:给定AAA中的任意元素能通过fff在BBB中找到一个元素作为像。这种信息只是A×BA\times BA×B的一个子集而已:Γf≔{(a,b)∈A×B∣b=f(a)}⊆A×B\

2020-07-23 10:04:51 569

原创 Algebra:Chapter 0 - 集合练习题

集合练习题1.1. 找到有关罗素悖论(Russell’s paradox),然后理解它1.2. 证明如果∼\sim∼是集合SSS上的一个关系,那么在1.5节中定义的对应的簇P∼\mathscr{P}_{\sim}P∼​是集合SSS的一个划分:就是说,它的元素是非空的,不相交的,并且它们的并是SSS。1.3. 给定集合SSS上的一个划分P\mathscr{P}P,问如何定义SSS上的关系∼\sim∼使得P\mathscr{P}P是对应的划分。1.4. 有多少种等价关系可以定义在集合{1,2,3}\{1

2020-07-22 16:50:40 752 1

原创 Algebra:Chapter 0 - 等价关系,划分,商

等价关系,划分,商在集合SSS上的关系与集合SSS中元素的选择相关。例如,在集合Z\mathbb{Z}Z上的关系<<<就是一种用来比较两个整数大小的方法:由于2<52<52<5,所以222和555在某种意义上是相关的,而555和222在这个意义下是不相关的。在实际使用时,关系的意义完全取决于集合中一个元素如何与另一个元素相关。关系直观的定义就是:一个集合SSS上的关系就是笛卡尔积S×SS\times SS×S的一个子集RRR。如果(a,b)∈R(a,b) \in R(

2020-07-22 14:21:13 860

原创 Algebra:Chapter 0 - 不相交并和积

不相交的并和积之前学过的那些集合操作的问题是并不是被定义成一个集合,而是一个到up to isomorphisms of setsup\ to\ isomorphisms\ of\ setsup to isomorphisms of sets(至多是集合的同构),也就是双射(bijectionsbijectionsbijections)。为了能有更大的意义,我们必须讨论functionsfunctionsfunctions。

2020-07-22 13:49:45 888

原创 Algebra:Chapter 0 - 集合间的操作

集合间的操作我们可以对现有的集合进行一些标准操作,从而得到更多的集合。这些操作有:∪\cup∪:并集;∩\cap∩:交集;∖\setminus∖:差集;∐\coprod∐:不相交的并;×\times×:笛卡尔积;还有“等价关系的商集”。大多数操作对于读者来说都已经很熟悉了:例如,{1,2,4}∪{3,4,5}={1,2,3,4,5}\{1,2,4\}\cup\{3,4,5\}=\{1,2,3,4,5\}{1,2,4}∪{3,4,5}={1,2,3,4,5}还有{1,2,4}∖{3,4,

2020-07-22 09:33:15 402 2

原创 Algebra:Chapter 0 - 集合的包含

集合的包含正如我们所提到的,两个集合是相等的当且仅当它们包含相同的元素。我们说一个集合SSS是一个集合TTT的子集如果集合SSS的每个元素都是集合TTT中的一个元素,用符号表示为:S⊆TS \subseteq TS⊆T按照惯例,S⊂TS \subset TS⊂T表示这样一件事:不像<<< vs. ≤\leq≤,它并不排除SSS和TTT相等的可能性。为了避免混淆,我们将会在本书中一致使用⊆\subseteq⊆。用S⊊TS\subsetneq TS⊊T表示SSS真包含于TTT:也就是S⊆TS

2020-07-21 22:12:14 514

原创 Algebra:Chapter 0 - 集合

集合set记号将“一坨对象”这个直观的概念给正式化了。集合中所包含的对象就确定了这个集合:两个集合AAA和BBB是相等的(记作A==BA == BA==B)当前仅当它们包含了相同的元素。“什么是一个元素?”这个问题在朴素集合论是一个forbidden question。作者这里就是提了一下,现阶段就把元素当作鸡鸭牛羊,点线面等乱七八糟的东西,反正都能往集合里面装。可以通过列出集合中的所有元素来定义一个集合。A:={1,2,3}A := \{1,2,3\}A:={1,2,3}按约定,集合中的元素

2020-07-21 20:04:03 950 1

原创 Algebra:Chapter 0 - 预备知识: 集合论和categories

预备知识: 集合论和categories不知道怎么翻译这个categories,等我知道了再改成中文吧!对于集合论的正确处理已经超出了本书的范围和作者的competence。大名鼎鼎的一个公理就是:Zermelo-Frankel axioms。这本书中范围限定在朴素集合论,用它里面的符号和术语足够我们精确地表达数学定义,statements和它们的证明。在代数学中这些朴素集合论的知识是必要的。在本章中我们先看一下朴素集合论的语言,主要是建立我们后面要用的记号。然后会尝试一下categories语言

2020-07-21 17:30:05 527 2

原创 Algebra:Chapter 0 - 引言

引言这本书主要是给高年级的本科生和初级的研究生课程使用。虽然有很多的书都想将代数知识介绍给这个级别的学生,但是有时候还是需要一本从零开始的自包含的书,它假设读者并没有了解关于这一学科的很多知识。同时这本书还能以一个相当现代的和categorically minded观点来介绍这一知识,能够有一定的深度。有很多的教材达到了部分的要求,然而并没有满足全部。这本书的目的就基于此。作者想写一本概念上是自包含的书,能够以一个较高的视角和较深的深度介绍代数学的知识。这本书还不要求读者有很多的知识储备。嘿嘿,希望这

2020-07-21 17:12:23 1236

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除