动态规划0—1背包问题

                                                                动态规划0-1背包问题
Ø
   问题描述:
   给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品,使得装
入背包中物品的总价值最大?
Ø
  对于一种物品,要么装入背包,要么不装。所以对于一种物品的装入状态可以取0和1.我们设物品i的装入状态为xi,xi∈ (0,1),此问题称为0-11背包问题。
                               过程分析
 

    数据:物品个数n=5,物品重量w[n]={0,2,2,6,5,4},物品价值V[n]={0,6,3,5,4,6},

     (第0位,置为0,不参与计算,只是便于与后面的下标进行统一,无特别用处,也可不这么处理。)总重量c=10.

Ø背包的最大容量为10,那么在设置数组m大小时,可以设行列值为6和11,那么,对于m(i,j)就表示可选物品为i…n背包容量为j(总重量)时背包中所放物品的最大价值。

 

                                         

 

 

下面是自己写的源码:


    #include<stdio.h>  
    #include<stdlib.h>  
    #include<iostream>  
    #include<queue>  
    #include<climits>  
    #include<cstring>  
    using namespace std;  
    const int c = 10;             //背包的容量  
    const int w[] = {0,2,2,6,5,4};//物品的重量,其中0号位置不使用 。   
    const int v[] = {0,6,3,5,4,6};//物品对应的待加,0号位置置为空。  
    const int n = sizeof(w)/sizeof(w[0]) - 1 ; //n为物品的个数   
    int x[n+1];  
    void package0_1(int m[][11],const int w[],const int v[],const int n)//n代表物品的个数   
    {  
        //采用从底到顶的顺序来设置m[i][j]的值  
        //首先放w[n]  
        for(int j = 0; j <= c; j++)  
           if(j < w[n]) m[n][j] = 0;     //j小于w[n],所对应的值设为0,否则就为可以放置   
           else         m[n][j] = v[n];  
             
        //对剩下的n-1个物品进行放置。  
        int i;  
        for(i = n-1; i >= 1; i--)  
            for(int j = 0; j <= c; j++)  
               if(j < w[i])   
                            m[i][j] = m[i+1][j];//如果j < w[i]则,当前位置就不能放置,它等于上一个位置的值。  
                                                //否则,就比较到底是放置之后的值大,还是不放置的值大,选择其中较大者。              
               else         m[i][j] = m[i+1][j] > m[i+1][j-w[i]] + v[i]?   
                                      m[i+1][j] : m[i+1][j-w[i]] + v[i];    
    }  
    void answer(int m[][11],const int n)  
    {  
        int j = c;  
        int i;  
        for(i = 1; i <= n-1; i++)  
            if(m[i][j] == m[i+1][j]) x[i] = 0;  
            else                    {   
                                     x[i] = 1;  
                                     j = j - w[i];  
                                     }      
        x[n] = m[i][j] ? 1 : 0;   
    }  
    int main()  
    {  
     int m[6][11]={0};  
       
     package0_1(m,w,v,n);  
     for(int i = 0; i <= 5; i++)  
     {  
         for(int j = 0; j <= 10; j++)  
         printf("%2d ",m[i][j]);  
         cout << endl;   
     }   
     answer(m,n);  
     cout << "The best answer is:\n";  
     for(int i = 1; i <= 5; i++)  
     cout << x[i] << " ";  
     system("pause");  
     return 0;  
    }  


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值