当前搜索:

[置顶] 【学习排序】 Learning to Rank中Pointwise关于PRank算法源码实现

讲述的就是Learning to Rank中Pointwise的认识及PRank算法的实现.主要从以下四个方面进行讲述: 1.学习排序(Learning to Rank)概念 2.基于点的排序算法(Pointwise)介绍 3.基于顺序回归(Ordinal Regressi...
阅读(18900) 评论(38)

【python数据挖掘课程】十六.逻辑回归LogisticRegression分析鸢尾花数据

回归算法作为统计学中最重要的工具之一,它通过建立一个回归方程用来预测目标值,并求解这个回归方程的回归系数。本篇文章详细讲解了逻辑回归模型的原理知识,结合Sklearn机器学习库的LogisticRegression算法分析了鸢尾花分类情况。更多知识点希望读者下来后进行拓展,也推荐大学从Sklear...
阅读(3804) 评论(2)

【python数据挖掘课程】十四.Scipy调用curve_fit实现曲线拟合

前面系列文章讲过各种知识,包括绘制曲线、散点图、幂分布等,而如何在在散点图一堆点中拟合一条直线,也变得非常重要。这篇文章主要讲述调用Scipy扩展包的curve_fit函数实现曲线拟合,同时计算出拟合的函数、参数等。希望文章对你有所帮助,如果文章中存在错误或不足之处,还请海涵~
阅读(12487) 评论(17)

【python数据挖掘课程】十二.Pandas、Matplotlib结合SQL语句对比图分析

这篇文章主要讲述Python常用数据分析包Numpy、Pandas、Matplotlib结合MySQL分析数据,前一篇文章 "【python数据挖掘课程】十一.Pandas、Matplotlib结合SQL语句可视化分析" 讲述了MySQL绘图分析的好处,这篇文字进一步加深难度,...
阅读(3760) 评论(0)

【Python数据挖掘课程】八.关联规则挖掘及Apriori实现购物推荐

这篇文章主要介绍三个知识点,也是我《数据挖掘与分析》课程讲课的内容。        1.关联规则挖掘概念及实现过程;        2.Apriori算法挖掘频繁项集;        3.Python实现关联规则挖掘及置信度、支持度计算。关联规则(Association Rules)是反映一个事物...
阅读(13793) 评论(9)

【Python数据挖掘课程】七.PCA降维操作及subplot子图绘制

这篇文章主要介绍四个知识点,也是我那节课讲课的内容。 1.PCA降维操作; 2.Python中Sklearn的PCA扩展包; 3.Matplotlib的subplot函数绘制子图; 4.通过Kmeans对糖尿病数据集进行聚类,并绘制子...
阅读(7751) 评论(0)

【Python数据挖掘课程】六.Numpy、Pandas和Matplotlib包基础知识

前面几篇文章采用的案例的方法进行介绍的,这篇文章主要介绍Python常用的扩展包,同时结合数据挖掘相关知识介绍该包具体的用法,主要介绍Numpy、Pandas和Matplotlib三个包。目录: 一.Python常用扩展包 二.Numpy科学计算包 ...
阅读(14556) 评论(5)

【Python数据挖掘课程】五.线性回归知识及预测糖尿病实例

今天主要讲述的内容是关于一元线性回归的知识,Python实现,包括以下内容: 1.机器学习常用数据集介绍 2.什么是线性回顾 3.LinearRegression使用方法 4.线性回归判断糖尿病 同时这篇文章是我上课的内容,所以参考了...
阅读(10365) 评论(11)

Python趣味代码整合之提升学生编程兴趣

这篇文章主要是整合一些趣味代码,一方面自己对这些内容比较感兴趣,另一方面希望这些代码能提升学生的编程兴趣,其主旨是代码能在我的电脑上运行并有些趣味。 参考资料: 知乎 - 可以用 Python 编程语言做哪些神奇好玩的事情?
阅读(5310) 评论(4)

【Python数据挖掘课程】四.决策树DTC数据分析及鸢尾数据集分析

今天主要讲述的内容是关于决策树的知识,主要包括以下内容:        1.分类及决策树算法介绍        2.鸢尾花卉数据集介绍        3.决策树实现鸢尾数据集分析     决策树算法根据数据的属性采用树状结构建立决策模型, 决策树模型常用来解决分类和回归问题。常见的算法包括:分类及...
阅读(10128) 评论(6)

【Python数据挖掘课程】三.Kmeans聚类代码实现、作业及优化

这篇文章直接给出上次关于Kmeans聚类的篮球远动员数据分析案例,同时介绍这次作业同学们完成的图例,最后介绍Matplotlib包绘图的优化知识。希望这篇文章对你有所帮助,尤其是刚刚接触数据挖掘以及大数据的同学,同时准备尝试以案例为主的方式进行讲解。如果文章中存在不足或错误的地方,还请海涵~
阅读(17453) 评论(8)

【Python数据挖掘课程】二.Kmeans聚类数据分析及Anaconda介绍

这次课程主要讲述一个关于Kmeans聚类的数据分析案例,通过这个案例让同学们简单了解大数据分析的基本流程,以及使用Python实现相关的聚类分析。 主要内容包括: 1.Anaconda软件的安装过程及简单配置 2.聚类及Kmeans算法介绍 ...
阅读(12320) 评论(17)

[python] 使用scikit-learn工具计算文本TF-IDF值

在文本聚类、文本分类或者比较两个文档相似程度过程中,可能会涉及到TF-IDF值的计算。这里主要讲述基于Python的机器学习模块和开源工具:scikit-learn。文章包括:一.Scikit-learn概念 1.概念知识 2.安装软件; 二.TF-IDF基础知识 1.TF-IDF 2.举例介绍;...
阅读(27867) 评论(17)

[python] LDA处理文档主题分布及分词、词频、tfidf计算

这篇文章主要是讲述如何通过LDA处理文本内容TXT,并计算其文档主题分布,主要是核心代码为主和运行效果图形。希望文章对你有所帮助吧尤其是初学者~哎!最后感叹下时光吧,仅以此诗纪念这三年写博客的坚持和北理工的最后四个月:但行好事,莫问前程。待随满天李桃,再追学友趣事。
阅读(19058) 评论(47)

[python] LDA处理文档主题分布代码入门笔记

以前只知道LDA是个好东西,但自己并没有真正去使用过。同时,关于它的文章也非常之多,推荐大家阅读书籍《LDA漫游指南》,最近自己在学习文档主题分布和实体对齐中也尝试使用LDA进行简单的实验。这篇文章主要是讲述Python下LDA的基础用法,作为一篇入门文章,它主要源自官方文档,希望对大家有所帮助。...
阅读(19018) 评论(15)

[python] Kmeans文本聚类算法+PAC降维+Matplotlib显示聚类图像

本文主要讲述以下几点: 1.通过scikit-learn计算文本内容的tfidf并构造N*M矩阵(N个文档 M个特征词); 2.调用scikit-learn中的K-means进行文本聚类; 3.使用PAC进行降维处理,每行文本表示成两维数据; ...
阅读(12110) 评论(11)

神经网络和机器学习基础入门分享

最近在做知识图谱实体对齐和属性对齐中,简单用了下Word2vec谷歌开源代码。本文主要讲述了机器学习的一些入门知识以及神经网络的基础概念,同时引入了很多例子进行讲解。 机器学习方法是计算机利用已有的数据(经验),得出了某种模型(迟到的规律),并利用此模型预测未来(是否迟到)的一种方法。人工神经网络...
阅读(8252) 评论(2)

知识图谱相关会议之观后感分享与学习总结

目录:一.面向知识图谱的信息抽取技术 二.常识知识在结构化知识库构建中的应用 三.浅谈逻辑规则在知识图谱表示学习中的应用 四.大规模知识图谱表示学习 五.知识图谱中推理技术及工具介绍 六.多语言知识图谱中的知识链接 七.知识图谱关键技术和在企业中的应用 由于我毕设是与知识图谱、实体...
阅读(9740) 评论(6)

[转载] 机器学习科普文章:“一文读懂机器学习,大数据/自然语言处理/算法全有了”

PS:文章主要转载自CSDN大神"黑夜路人"的文章:           http://blog.csdn.net/heiyeshuwu/article/details/43483655       本文主要对机器学习进行科普,包括机器学习的定义、范围、方法,包括机器学习的研究...
阅读(5692) 评论(0)

【学习排序】 Learning to Rank 中Listwise关于ListNet算法讲解及实现

前一篇文章"Learning to Rank中Pointwise关于PRank算法源码实现"讲述了基于点的学习排序PRank算法的实现.该篇文章主要讲述Listwise Approach和基于神经网络的ListNet算法及Java实现.包括: 1.基于列的学习排序(Li...
阅读(11632) 评论(16)
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 252万+
    积分: 2万+
    排名: 398
    牛人博客
    博客专栏
    最新评论