YC 内部绝密 AI 编程心法首公开:硅谷创业公司的效率是这样炼成的

公众号关注 「奇妙的 Linux 世界」

设为「星标」,每天带你玩转 Linux !

在过去一年里,Vibe Coding 成为硅谷和 YC 创业者圈子里的热门技能。它不是传统意义上的编程,也不是简单地让 AI 写代码,而是一种结合直觉、规划和迭代的新型开发方式。Vibe,意指顺着感觉、快速试错、不断调整方向;Coding,则是把想法快速转化为现实。

很多 YC 创始人和独立开发者,已经在日常工作中默默实践了 Vibe Coding,并总结出一套高效的方法论。

无论是 0 到 1 验证新想法,还是快速构建内部工具,Vibe Coding 都能显著提升速度和质量。它像一两年前兴起的提示工程(Prompt Engineering)一样,随着工具进化和经验积累,正在不断演变出新的技巧和最佳实践。

Y Combinator 合伙人 Tom Blomfield 过去一个月,使用 Claude Code、Windsurf 和 Aqua 等工具开发了一系列副项目,深入体验了 Vibe Coding。特意录制了一段视频,详细讲解如何高效利用 Vibe Coding。我们团队对这个视频做了精编翻译。希望能帮大家更好地掌握这项新技能。

图片

过去一个月,我一直在尝试 Vibe Coding,并且做了几个副项目。我的感受是,Vibe Coding 不仅本身表现出色,而且是一项可以持续提升的技能。只要你愿意多尝试、善于总结经验,就能不断提高效率。

1、如果你没有编程经验,可以从 Replit 或 Lovable 这类可视化工具入手。这些工具界面直观,能让你像搭积木一样实现自己的想法,特别适合产品经理和设计师快速验证创意。不过,这类工具在精细调整后端逻辑时,灵活性不好,容易出现错误。

如果你有一定编程基础,Windsurf、Cursor 或 Claude Code 可能更适合你。这些工具能更好地结合 AI 的能力和你的经验,让你灵活控制每一步。

2、无论用什么工具,第一步都不是直接写代码,而是和 AI 一起制定详细的开发计划。把这个计划整理成 Markdown 文件,放在项目文件夹里。计划要尽量细致,包括每个功能点、实现顺序、预期效果。

遇到暂时不做的功能,可以直接标注 “暂不实现”,还可以加一个 “待办事项” 部分,记录未来可能要补充的内容。计划的每一步都可以随时查阅和调整。

3、在实际开发过程中,建议分步骤推进。每次只实现一小块,完成后就测试和检查。如果发现计划有不合理的地方,及时调整或删除。不要试图一次性完成所有功能,这样容易出错。

每完成一个模块,就在计划里标记 “已完成”,方便追踪进度。遇到问题时,优先回到计划,重新审视整体思路。这样做不仅能让你对项目全局有清晰把控,还能让 AI 更好地理解你的需求。

4、版本控制非常重要。建议全程用 Git。每次新功能开发前,确保代码库是干净的。如果 AI 改错了,直接回退到上一个稳定版本。不要反复在有问题的代码上修补,否则只会让问题越来越多。

我的经验是,每次遇到 Bug,首先要将代码重置到之前的正常版本,而不是继续在错误的基础上修改,这样可以避免坏代码层层堆积,保持代码整洁。有些工具自带回滚功能,但我还是更信任 Git,因为它能让我随时回到一个已知有效的状态。

5、测试也很关键。建议让 AI 帮你写高层次的集成测试,模拟用户操作,确保功能端到端可用。不要只写底层的单元测试,更要关注整个流程是否顺畅。这样可以及时发现回归和不必要的修改,保证每次调整不会影响其他功能。

我的习惯是,每完成一个功能,就立刻写测试用例,并让 AI 解释每个测试覆盖的场景。这样不仅能提升代码质量,也能帮助自己更好地理解业务逻辑。

6、AI 不只是写代码的工具,也能帮你做很多杂事。比如,我用 Claude 3.7 配置 DNS 服务,用 ChatGPT 生成网站图标,让 AI 批量处理图片格式。这些原本繁琐的任务,AI 可以帮你快速完成,大大提升效率。有时候,AI 甚至能成为你的设计师、运维助手,让你专注于最核心的业务开发。

7、当遇到 Bug 时,直接把错误信息复制给 AI,通常能快速定位和修复问题。对于复杂的 Bug,可以让 AI 先分析三四个可能原因。每次修 Bug 失败后,要重置代码,再次尝试,避免反复叠加错误。现在主流的编码工具,基本都支持直接粘贴错误日志,有的甚至会自动注入日志信息。未来,AI 识别和修复 Bug 的能力只会越来越强。

8、给 AI 写清晰、具体的指令也很重要。不同工具有不同的指令格式,比如 Cursor 规则、Windsurf 规则或 Claude 的 Markdown 文件。可以参考网上的建议,也可以自己总结经验。

很多 YC 创始人会为他们的 AI 编写几百行指令,极大提升效率。我的建议是,先用简单的指令试试效果,再逐步完善和细化,找到最适合自己的风格。

9、建议把相关文档下载到本地,放在项目文件夹的子目录里,让 AI 可以直接读取。指令里可以写:“实现功能前,先阅读这些文档。”这样比在线检索更稳定、准确。有些人会用 MCP 服务器来管理文档,但我觉得本地管理更简单高效,尤其是文档量不大时。

10、把 AI 当老师,让它逐步解释代码实现,是学习新技术的好方法。你可以让 AI 逐行解释代码,帮助你理解每一个细节,比查 Stack Overflow 更高效。尤其是遇到陌生的框架或工具时,让 AI 给你讲解底层逻辑,可以大大缩短学习曲线。

11、遇到复杂功能时,建议单独开一个新项目,先做一个小型参考实现,不考虑主项目的复杂性。或者下载 GitHub 上的参考实现,让 AI 按照这个标准集成到主项目里。这种方式可以降低集成难度,提升成功率。把小文件和模块化结构当做你的朋友,无论是人工开发还是 AI 辅助开发,模块化都能让代码更易于理解和维护。

12、保持代码模块化、文件小巧,便于维护,也方便 AI 理解。采用模块化架构,保持清晰的外部接口,内部逻辑可以随时调整,只要接口和测试通过即可。未来,模块化服务架构会越来越普及,无论是开发者还是 AI,都能在清晰的边界下高效协作。

13、选择技术栈时,建议用社区成熟、资料丰富的框架,比如 Ruby on Rails。AI 在这些框架上的表现通常更好,因为训练数据多、约定一致。新兴语言比如 Rust 或 Elixir,AI 的表现可能没那么稳定,但未来也有可能会变好。我的经验是,越是成熟的技术栈,AI 的表现就越稳定,越能帮你快速落地想法。

14、截图可以帮助 AI 理解 UI 问题或获取设计灵感。语音输入也是高效的交互方式,尤其在长时间工作时能提升效率。AI 对语法和标点的容忍度很高,语音转录的小错误不会影响结果。现在有些工具,已经能把语音内容直接转成指令,大大提高了输入效率。

15、确保代码正常工作、测试通过后再重构。可以让 AI 帮你识别重复代码或重构候选部分,保持文件简洁,便于维护。我一般是在每个阶段结束后,让 AI 检查一下代码结构,看看哪些地方可以优化,哪些模块可以拆分,这样既能保证代码质量,也方便后续扩展。

16、AI 领域发展极快,几乎每周都有新模型和工具出现。建议多尝试不同模型,看看哪些更适合你的需求。有的模型适合全局规划,有的适合具体实现,有的在调试或重构上表现更好。比如,Gemini 在代码索引和规划方面表现突出,Claude 3.7 Sonnet 在代码实现上更强,GPT-4.1 虽然强大,但在实际开发中也会有不足。多试、多对比,找到最适合自己的组合。



最近,我们建立了一个技术交流微信群。目前群里已加入了不少行业内的大神,有兴趣的同学可以加入和我们一起交流技术,在 「奇妙的 Linux 世界」 公众号直接回复 「加群」 邀请你入群。

你可能还喜欢

点击下方图片即可阅读



点击上方图片,『美团|饿了么』外卖红包天天免费领

更多有趣的互联网新鲜事,关注「奇妙的互联网」视频号全了解!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值