【Tensorflow2.0】去掉不足一个batch的多余数据

在TensorFlow中,当创建批次数据集时,`drop_remainder=True`参数用于确保批次大小始终为指定值。这在批处理过程中可能会丢弃不足一整个批次的数据点,但能保证训练过程的效率和一致性。例如,通过`tf.data.Dataset.from_tensor_slices`创建数据集,并用shuffle和batch方法进行预处理。
摘要由CSDN通过智能技术生成

需要在数据的的batch中添加drop_remainder=True即可

类似,如:

train_dataset = tf.data.Dataset.from_tensor_slices((train_data, train_labels))
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(BATCH_SIZE, drop_remainder=True)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值