【测试开发】【postman】按顺序循环执行接口 在Collection Runner界面上,选择你的环境,然后点击“Start Run”按钮。也可以在Iterations设置循环次数,每次循环的延迟时间Delay。这会按顺序执行集合中的所有请求,根据每个请求中的postman.setNextRequest()设置的顺序来执行。点击右侧的“Run”按钮,这将打开Collection Runner界面。点击Postman界面左侧的你的集合名称。
【论文阅读记录】代码的可学习语义表示 论文标题:Neural Code Comprehension: A Learnable Representation of Code Semantics原文链接:Neural Code Comprehension: A Learnable Representation of Code Semantics说明:在读研究生为方便记忆梳理学习,手敲论文笔记,概括论文的主要思想背景在代码学习表示领域,大多数试图直接处理代码或使用句法树表示。但是,由于功能调用,分支和可互换的语句顺序等结构...
【论文阅读笔记】使用结构代码嵌入检查智能合约 论文标题:Checking Smart Contracts With Structural Code Embedding原文链接Checking Smart Contracts With Structural Code Embedding | IEEE Journals & Magazine | IEEE Xplore说明:在读研究生为方便记忆梳理学习,手敲论文笔记,概括论文的主要思想背景智能合约指是一个程序,当满足特定的预定义条件时,可以触发执行任何任务。智能合约越来越...
【论文阅读笔记】自动化开发者聊天挖掘 论文标题:Automating Developer Chat Mining原文链接:Automating Developer Chat Mining | IEEE Conference Publication | IEEE Xplore说明:在读研究生为方便记忆梳理学习,手敲论文笔记,概括论文的主要思想背景在开源软件 (OSS) 项目,聊天室中的大多数讨论线程都遵循问答格式,一些开发人员(提问者)提出最初的问题,而其他人(受访者)加入提供答案。这些讨论线程嵌入了丰富的信息,可以满...
【论文阅读笔记】用于二进制代码相似性检测的语义感知神经网络 论文标题:Order Matters: Semantic-Aware Neural Networks for Binary Code Similarity Detection原文链接:https://ojs.aaai.org/index.php/AAAI/article/view/5466说明:在读研究生为方便记忆梳理学习,手敲论文笔记,概括论文的主要思想和内容。背景二进制代码相似性检测,其目的是在不访问源代码的情况下检测相似的二进制函数,是计算机安全的一项基本任务。利用二进制代码的流程..
【论文阅读笔记】NLP预训练语言模型综述 论文标题:Pre-trained Models for Natural Language Processing: A Survey原文链接:https://arxiv.org/pdf/2003.08271.pdf说明:在读研究生为方便记忆梳理学习,手写论文笔记,概括论文的主要思想和内容。
【论文阅读笔记】Post2Vec:学习StackOverflow帖子的分布式表示 论文标题:Post2Vec: Learning Distributed Representations of Stack Overflow Posts原文链接:https://ieeexplore.ieee.org/abstract/document/9469219说明:在读研究生为方便记忆梳理学习,手敲论文笔记,概括论文的主要思想和内容。背景利用深度学习的方法与模型对StackOverflow帖子进行分布式表达的学习,然后将这些向量用于不同的下游任务。StackOverflow帖子主要包..
【论文阅读笔记】从在线开发者聊天中自动提取基于意见的问答 论文标题:Automatic Extraction of Opinion-based Q&A from Online Developer Chats原文链接:https://ieeexplore.ieee.org/abstract/document/9402078说明:在读研究生为方便记忆梳理学习,手敲论文笔记,概括论文的主要思想和内容。背景早期的对话助手专注于简短的、面向任务的对话(例如:播放音乐;查找附近的餐馆)。而针对于软件开发人员的对话助手的开发,更加复杂(例如:询问意见与..
【Tensorflow2.0】去掉不足一个batch的多余数据 需要在数据的的batch中添加drop_remainder=True即可类似,如:train_dataset = tf.data.Dataset.from_tensor_slices((train_data, train_labels))train_dataset = train_dataset.shuffle(buffer_size=1024).batch(BATCH_SIZE, drop_remainder=True)
利用dockerfile生成镜像 1.在虚拟机安装docker1、检查内核版本,必须是3.10及以上uname -r2、安装dockeryum install docker3、输入y确认安装4、启动docker[root@localhost ~]# systemctl start docker[root@localhost ~]# docker -vDocker version 1.12.6, build 3e8e77d/1.12.65、开机启动docker[root@localhost ~]# systemctl e
【深度强化学习笔记】--第二节:马尔可夫决策过程 1.马尔可夫性质马尔可夫决策过程(Markov Decision Process, MDP)独有性质即当前时刻的状态仅与前一时刻的状态和动作有关,与其他时刻的状态和动作条件独立。等式右侧的条件概率被称为MDP的状态间的转移概率 。马尔可夫性质是所有马尔可夫模型共有的性质,但相比于马尔可夫链,MDP的转移概率加入了智能体的动作,其马尔可夫性质也与动作有关2.MDP基本组成部分状态集合动作集合状态转移概率函数奖励函数策略函数...
【深度强化学习笔记】--第一节:强化学习模型 1.强化学习强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一,用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题 [1] 。强化学习的常见模型是标准的马尔可夫决策过程(Markov Decision Process, MDP)。按给定条件,强化学习可分为基于模式的强化学习(model-based RL)和无模式强化学习(model-free RL) [1] ,以及主动强
【k8s】节点无法调度 【问题】部署pod任务,报错0/3 nodes are available: 1 node(s) were unschedulable, 2 node(s) didn’t match node selector.【解决方法】1.查看节点是否可调度kubectl get nodes2.如图,master被限制不可用3.讲pod部署到其他节点或者;联系root更改master的调度限制(一般不可取)...
【flink on k8s】部署flink-operator 1.准备各个配置文件crd.yamlapiVersion: apiextensions.k8s.io/v1beta1kind: CustomResourceDefinitionmetadata: name: flinkapplications.flink.k8s.iospec: group: flink.k8s.io names: kind: FlinkApplication listKind: FlinkApplicationList plural: flin
【spark 虚拟机模式】提交maven项目的jar运行 1.maven项目pom.xml <dependencies> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.12</artifactId> <version>3.0.0</version><!--
【spark on k8s】部署问题 部署spark任务在Kubernetes上报错使用官方案例部署失败`21/07/14 02:19:14 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform… using builtin-java classes where applicableUsing Spark’s default log4j profile: org/apache/spark/log4j-defaults.properties
【PyTorch深度学习】 第九讲:CNN基础 1.概念原理利用卷积盒,对数据矩阵进行相乘相加每个通道对应一个盒2.代码实现import torchfrom torchvision import transformsfrom torchvision import datasetsfrom torch.utils.data import DataLoaderimport torch.nn.functional as Fimport torch.optim as optim# prepare datasetbatch_size
【PyTorch深度学习】 第八讲:多分类 1.概念softMax:概率分布,将每个项的值/累加的值=每个结果出现的概率值NLLLoss:就是把输出与Label对应的那个值拿出来,再去掉负号,再求均值CrossEntropyLoss:就是把Softmax–Log–NLLLoss合并成一步2.代码实现import torchfrom torchvision import transformsfrom torchvision import datasetsfrom torch.utils.data import DataLoader