【强化学习基础篇-1】Q-Learning 在本篇博客中,我们将介绍强化学习中的经典算法Q-Learning。Q-Learning是一种基于值函数的强化学习算法,用于估计在某一状态下采取某一动作的预期累积奖励。Q-Learning通过不断更新Q值函数,逐步改进策略,最终收敛到最优Q值函数。
【MUJOCO控制篇-2】控制一个简单的机械臂 本篇博客将逐步分析和解释如何通过Python代码使用MuJoCo库来控制一个机械臂模型。我们将从加载模型开始,逐步深入到PID控制器的实现,最后讨论如何实现轨迹跟踪功能。上期内容为如何建模一个简单的机械臂模型,本篇文章将基于上篇内容进行深入探讨如何实现一个简单的控制。
【MUJOCO控制篇-1】建一个简单的模型 【MUJOCO控制篇-1】建一个简单的模型在本篇博客中,我们将深入探讨一个具体的MuJoCo模型,通过其XML配置文件来解析模型的组成、设计理念及其在模拟环境中的作用。MuJoCo(Multi-Joint dynamics with Contact)是一种用于机器人学、生物力学、仿生学和其他领域的物理引擎,它支持精确的力学模拟和复杂交互的创建。
【XML模型】Mujoco代码解读-2(humanoid.xml) 【XML模型】Mujoco代码解读-2(humanoid.xml)文章基于Mujoco210中model下的humanoid.xml文件作为例程
MUJOCO-python GLFWError: (65544) 通过以上步骤,在Ubuntu 22.04 LTS版本中运行python脚本时,报错GLFWError: (65544) b'Wayland: Window position retrieval not supported'可以解决兼容问题并得到控制文件下的mujoco界面。
【MUJOCO学习计划-2】深入解析MuJoCo Python接口:功能与实例 MuJoCo(Multi-Joint dynamics with Contact)是一款用于精确模拟物理交互的高级工具。它的Python接口提供了丰富的功能,使得在科学研究和机器人技术开发中的应用成为可能。MuJoCo的Python接口为用户提供了强大的功能来创建和分析复杂的物理模拟。通过熟悉其各种函数,用户可以在机器人学、仿生学和其他领域进行高效的模拟和研究。