题意:给一个m X n的矩阵,1代表能放牛,0代表不能放牛,放牛不能相邻,问有多少种方法。。
状压DP入门,这题状态看起来很多,但是有用的不多。。。
先弄出状态存起来,有用的状态就是不能相邻的(init)。。。把每个值左移一位,如果&上为0就是不相同的了。
然后与行与,得出第一行哪些状态有值,最后直接枚举转移就是,dp[i][state[j]]=sigam(dp[i-1][state[[k]]);.....
/*************************************************************************
> File Name: poj3254.cpp
> Author: tjw
> Mail:
> Created Time: 2014年11月09日 星期日 21时45分54秒
************************************************************************/
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
#include<stack>
#include<map>
#define ll long long
#define ls k<<1
#define rs k<<1|1
using namespace std;
const int MAXN=10010;
const int MOD=1e9;
int state[MAXN];
int row[20];
int dp[20][10010];
int cnt;
void init(int n)
{
int k=(1<<n),i;
cnt=0;
for(i=0;i<k;i++)
if((i&(i<<1))==0)
state[cnt++]=i;
}
int main()
{
int n,m,i,j,k;
while(scanf("%d%d",&n,&m)==2)
{
cnt=0;
init(m);
int x;
memset(row,0,sizeof(row));
for(i=1;i<=n;i++)
{
for(j=m-1;j>=0;j--)
{
scanf("%d",&x);
row[i]+=x<<j;
}
}
memset(dp,0,sizeof(dp));
for(i=0;i<cnt;i++)
if((row[1]&state[i])==state[i])
dp[1][i]=1;
for(i=2;i<=n;i++)
{
for(j=0;j<cnt;j++)
{
if((row[i]&state[j])!=state[j])
continue;
for(k=0;k<cnt;k++)
{
if((state[j]&state[k])==0&&dp[i-1][k])
{
dp[i][j]=(dp[i][j]+dp[i-1][k])%MOD;
}
}
}
}
int ans=0;
for(i=0;i<cnt;i++)
{
ans=(ans+dp[n][i])%MOD;
}
printf("%d\n",ans);
}
return 0;
}