tensorflow学习——TensorBoard可视化

1、添加要显示的变量 import tensorflow as tf # 用于标量的summary tf.summary.scalar('loss', cross_entropy) tf.summary.scalar('accuracy', accuracy) # 收集以下三个信息,统计...

2017-09-26 22:19:31

阅读数:481

评论数:0

tensorflow学习——爬虫(headers爬取图片)

1、使用正则查找import requests import re import os import timeheaders = { "Accept": "text/html,application/xhtml+xml,application/x...

2017-09-25 16:30:00

阅读数:862

评论数:0

tensorflow学习——爬虫(代理)

# -*- coding: utf-8 -*- """ Created on Sat Sep 23 20:36:16 2017@author: Administrator """import urllib.request import u...

2017-09-24 09:51:20

阅读数:446

评论数:0

tensorflow学习——爬虫(图片及IP地址)

import re import urllib.requestdef open_url(url): req = urllib.request.Request(url) req.add_header("User-Agent", "Mozilla/5.0 ...

2017-09-23 20:49:06

阅读数:243

评论数:0

tensorflow学习——xml文件写与读

1、写入xmlfrom xml.dom import minidom#写入xml文档的方法 def create_xml_test(filename): #新建xml文档对象 xml=minidom.Document() #创建第一个节点,第一个节点就是根节点了 bo...

2017-09-18 18:53:03

阅读数:632

评论数:0

tensorflow学习——parser变量定义

import argparseparser = argparse.ArgumentParser()parser.add_argument("--input_dir", help="path to folder containing images")# req...

2017-09-13 09:20:16

阅读数:1430

评论数:0

tensorflow学习——tf.train.Supervisor()与tf.train.saver()

1、tf.train.Supervisor()import tensorflow as tf import numpy as np import oslog_path = 'ckptdir/' log_name = 'liner.ckpt' x_data = np.random.rand(100)...

2017-09-12 17:53:21

阅读数:301

评论数:0

tebsorflow学习——tf.train.ExponentialMovingAverage与tf.train.exponential_decay

#1、滑动平均模型 import tensorflow as tf #定义一个变量用于计算滑动平均,这个变量的初始值为0. #类型为tf.float32,因为所有需要计算滑动平均的变量必须是实数型 v1=tf.Variable(0,dtype=tf.float32) #这里step变量模拟神经网络...

2017-09-11 22:12:45

阅读数:376

评论数:0

tensorflow学习——tf.floor与tf.train.batch

1、tf.floor(x, name=None) 是向下取整,3.6=>3.0; tf.ceil(x, name=None) 是向上取整,3.6=>4.0。2、tf.train.batch([example, label], batch_size=batch_size, ...

2017-09-11 22:11:39

阅读数:1564

评论数:0

tensorflow学习——json数据保存及读取

1、globimport glob # 返回文件夹下所有的py文件 f = glob.glob('tf\*.py') # cifar10\__init__.py2、jsonimport jsondata1 = {'b':789,'c':456,'a':123} data2 = {'a':123...

2017-09-09 15:20:21

阅读数:1364

评论数:0

论文阅读

1、CycleGAN 相关博客1 博客2 2、pix2pix生成器结构图: 损失函数: L1很好的捕捉低频率的信息,所以GAN就捕捉高频率信息。 判别器使用PatchGAN进行判断真假。把整幅图像分成若干N*N的小块进行统计判断。

2017-09-04 09:58:59

阅读数:211

评论数:0

tensorflow学习——collections.namedtuple函数

from collections import namedtuple# 定义一个namedtuple类型User,并包含name,sex和age属性。 #User = namedtuple('User', ['name', 'sex', 'age']) User = namedtuple('Use...

2017-09-02 21:50:33

阅读数:463

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭