深入理解梯度消失:从DNN到RNN的全面解析与解决方案


在深度学习的训练过程中,梯度消失是一个经典且棘手的问题。本文将带你从原理到实践,全面理解这一现象及其应对策略。

1. 什么是梯度消失?

梯度消失是指在训练深度神经网络时,反向传播算法中,从输出层向输入层方向逐层计算梯度时,梯度值会变得越来越小,以至于靠近输入层的隐藏层权重更新非常缓慢,甚至停止更新

这导致了一个严重的问题:网络的早期层无法有效地从数据中学习,整个网络的性能因此受到限制。想象一下,一个团队中只有靠近领导的几个人在工作,而基层员工却无所适从——这样的组织效率必然低下。

2. 梯度消失的根源:链式法则与激活函数

要理解梯度消失,必须深入分析神经网络的训练过程——反向传播算法

2.1 反向传播与链式法则

神经网络的训练目标是最小化损失函数。我们通过梯度下降来更新每一个权重(W),其更新公式为:
W_new = W_old - η * (∂Loss / ∂W)

这里的 ∂Loss / ∂W(损失函数对权重的梯度)就是告诉我们“权重应该朝哪个方向、改变多少才能降低损失”。反向传播就是计算这个梯度的算法。

反向传播的核心是

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

109702008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值