关于《愤怒的小鸟》,相信很多人都下载了,现在很多平台都有,IPhone、Android,听说微软的WindowsPhone7平台版本的也快了。如果你没玩过也没关系,这个游戏简单创意是,用一支弹弓发射一些小鸟(它们看上去有些生气),就像投垒球一样扔出一个弧线,目标是把对面的绿猪们打翻撞倒,就这么简单。
有蛋疼玩家对这个游戏产生了疑问:从物理学的角度来看,这些发射的小鸟垂直方向的加速度是恒定的吗?水平方向的运动速度呢?他采用了Tracker Video analysis软件,详细分析了小鸟被弹弓射出去后的飞行轨迹,然后再利用力学原理进行分析,最后得出了一个结论。是什么结论呢?别着急,我们先看看他的一些分析。
“Tracker Video analysis的原理是,在一段视频中同时标记的两个「特征对象」,并且由始自终追踪这两个对象。通过追踪视频中每一帧画面里这两个对象的位置,Tracker 将会测量、计算、生成所需的数据。
另外一个需要知道的东西是视频中的比例尺。比例尺是多大?这谁知道呢?让我们从一个在每一关中都会出现的对象开始——用来发射鸟的弹弓。我先把这只弹弓的高度设定为1个AB 。
然后回到数据。下面的测绘图,这只鸟儿水平方向 (x) 的位置随时间的变化。
这张图意味着什么呢?简单来说, 它意味着这只鸟儿在在水平 X 轴方向进行匀速运动。在我的实验里,这只鸟的水平速度是 2.46 AB/s (假设视频中的运动是实时的)。这足够了吗?好吧,假设这是真实的物理现象,并且是真实的抛物运动。那么在这个实验中,这只鸟儿中空中的受力示意图将是下面这样:
没错,就这么简单。这只鸟儿(在空中)所受的唯一的力(假设这只鸟儿没有移动的太快的话)就是地球的万有引力。这也是我看到很多初入门者所犯的错误。他们总是试图在水平方向上施加更大力量,因为他们觉得鸟儿是朝着这个方向飞行的。千万别这么做!亚里士多德或许让你这么认为,但你不会想加入他的俱乐部的。在这个例子中,没有水平方向的力——也没有空气阻力。
那么来看看垂直运动?
噢,我忘记指出在这张图表中有一些缺失的数据,就是当鸟儿「飞出」屏幕之外的时候。实际上,在这种情况下垂直方向仍然在进行匀加速运动(因为图形完全符合二次方程式)。这里涉及到的运动方程式是:
上面方程中的「t2」前的因数是加速度的1/2 ,这意味着这只鸟儿的加速度(在垂直方向)是「2AB/s2」。但是如果这只鸟儿真的在地球上呢?在地球上,垂直地球方向的重力加速度是「9.8 m/s2」。那么,我就能算出这只弹弓的高度了。
多大的一只弹弓呢!哇喔,差不多5米高!那么,根据比例再测量一下这只红色的鸟儿有多大呢?大约有70厘米高!一只大鸟!一只又大又愤怒的鸟!”
看到这样的分析结果,您对作者有什么评价呢?嗯,绝对是蛋疼哥。
“Tracker Video analysis的原理是,在一段视频中同时标记的两个「特征对象」,并且由始自终追踪这两个对象。通过追踪视频中每一帧画面里这两个对象的位置,Tracker 将会测量、计算、生成所需的数据。
另外一个需要知道的东西是视频中的比例尺。比例尺是多大?这谁知道呢?让我们从一个在每一关中都会出现的对象开始——用来发射鸟的弹弓。我先把这只弹弓的高度设定为1个AB 。
然后回到数据。下面的测绘图,这只鸟儿水平方向 (x) 的位置随时间的变化。
这张图意味着什么呢?简单来说, 它意味着这只鸟儿在在水平 X 轴方向进行匀速运动。在我的实验里,这只鸟的水平速度是 2.46 AB/s (假设视频中的运动是实时的)。这足够了吗?好吧,假设这是真实的物理现象,并且是真实的抛物运动。那么在这个实验中,这只鸟儿中空中的受力示意图将是下面这样:
没错,就这么简单。这只鸟儿(在空中)所受的唯一的力(假设这只鸟儿没有移动的太快的话)就是地球的万有引力。这也是我看到很多初入门者所犯的错误。他们总是试图在水平方向上施加更大力量,因为他们觉得鸟儿是朝着这个方向飞行的。千万别这么做!亚里士多德或许让你这么认为,但你不会想加入他的俱乐部的。在这个例子中,没有水平方向的力——也没有空气阻力。
那么来看看垂直运动?
噢,我忘记指出在这张图表中有一些缺失的数据,就是当鸟儿「飞出」屏幕之外的时候。实际上,在这种情况下垂直方向仍然在进行匀加速运动(因为图形完全符合二次方程式)。这里涉及到的运动方程式是:
上面方程中的「t2」前的因数是加速度的1/2 ,这意味着这只鸟儿的加速度(在垂直方向)是「2AB/s2」。但是如果这只鸟儿真的在地球上呢?在地球上,垂直地球方向的重力加速度是「9.8 m/s2」。那么,我就能算出这只弹弓的高度了。
多大的一只弹弓呢!哇喔,差不多5米高!那么,根据比例再测量一下这只红色的鸟儿有多大呢?大约有70厘米高!一只大鸟!一只又大又愤怒的鸟!”
看到这样的分析结果,您对作者有什么评价呢?嗯,绝对是蛋疼哥。