Hadoop关于处理大量小文件的问题和解决办法(2)--CombineFileInputFormat

本文补充讲解使用CombineFileInputFormat处理Hadoop中大量小文件的问题,通过将多个小文件合并成一个split,减少mapper任务数。详细介绍了CombineFileInputFormat的数据划分步骤,包括对节点、机架上Block的处理策略,以优化小文件的处理效率。
摘要由CSDN通过智能技术生成

 针对上篇Hadoop关于处理大量小文件的问题和解决办法,本文补充讲解CombineFileInput类来处理大象小文件问题。

 

CombineFileInputFormat

 

 与之前hadoop默认的FileInputFormat对原始数据划分输入片不同的是,默认的方式是将每一个文件划分成若干个splits,CombineFileInputFormat顾名思义是将多个文件合并成一个split,这种方式对于大量小文件来说,肯定会减小split数量,进而会减少mapper任务数。该类对划分数据块的主要步骤如下:

   (1)每个节点的blocks。对该节点所有块遍历,累计其大小,如果大小超过设定maxSize,合并成一个split,如果都遍历完仍然有blocks没处理,判断该block

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值