计算智能课程设计(以人事招聘为例的误差反向传播算法)

这篇博客介绍了误差反向传播算法在人事招聘中的应用,通过理解多层神经网络的结构和原理,掌握反向传播算法。文章以人事招聘为例,详细解析了实验目的、实验内容,包括批量梯度下降、随机梯度下降和小批量梯度下降的实现,并探讨了numpy.dot()函数、sigmoid函数以及Numpy中shape函数的用法。
摘要由CSDN通过智能技术生成

写在前面

昨天写了基于感知机的鸢尾花分类,今天下午要考《大数据技术原理》,本来是整个白天的课程设计,因为考试少了一下午。之前看书复习了一波,但记忆是需要反复锤炼的,所以要抓紧写完这个传播算法,抽出时间再去复习会。2021.11.30/2021.12.1/2021.12.2

以人事招聘为例的误差反向传播算法

实验目的

理解多层神经网络的结构和原理,掌握反向传播算法对神经元的训练过程,了解反向传播公式。通过构建 BP 网络实例,熟悉前馈网络的原理及结构。

示例代码

import numpy as np
import matplotlib.pyplot as plt

# 输入数据1行2列,这里只有张三的数据
X = np.array([[1,0.1]])
# X = np.array([[1,0.1],
#               [0.1,1],
#               [0.1,0.1],
#               [1,1]])
# 标签,也叫真值,1行1列,张三的真值:一定录用
T = np.array([[1]])
# T = np.array([[1],
#               [0],
#               [0],
#               [1]])

# 定义一个2隐层的神经网络:2-2-2-1
# 输入层2个神经元,隐藏1层2个神经元,隐藏2层2个神经元,输出层1个神经元

# 输入层到隐藏层1的权值初始化,2行2列
W1 = np.array([[0.8,0.2],
              [0.2,0.8]])
# 隐藏层1到隐藏层2的权值初始化,2行2列
W2 = np.array([[0.5,0.0],
              [0.5,1.0]])
# 隐藏层2到输出层的权值初始化,2行1列
W3 = np.array([[0.5],
              [0.5]])


# 初始化偏置值
# 隐藏层1的2个神经元偏置
b1 = np.array([[-1,0.3]])
# 隐藏层2的2个神经元偏置
b2 = np.array([[0.1,-0.1]])
# 输出层的1个神经元偏置
b3 = np.array([[-0.6]])
# 学习率设置
lr = 0.1
# 定义训练周期数10000
epochs = 10000
# 每训练1000次计算一次loss值  # 定义测试周期数
report = 1000
# 将所有样本分组,每组大小为
batch_size = 1

# 定义sigmoid函数
def sigmoid(x):
    return 1/(1+np.exp(-x))

# 定义sigmoid函数导数
def dsigmoid(x):
    return x*(1-x)

# 更新权值和偏置值
def update():
    global batch_X,batch_T,W1,W2,W3,lr,b1,b2,b3
    
    # 隐藏层1输出
    Z1 = np.dot(batch_X,W1) + b1    
    A1 = sigmoid(Z1)

    # 隐藏层2输出
    Z2 = (np.dot(A1,W2) + b2)
    A2 = sigmoid(Z2)
    
    # 输出层输出
    Z3=(np.dot(A2,W3) + b3)
    A3 = sigmoid(Z3)
    
    # 求输出层的误差
    delta_A3 = (batch_T - A3)
    delta_Z3 = delta_A3 * dsigmoid(A3)
    
    # 利用输出层的误差,求出三个偏导(即隐藏层2到输出层的权值改变)    # 由于一次计算了多个样本,所以需要求平均
    delta_W3 = A2.T.dot(delta_Z3) / batch_X.shape[0]
    delta_B3 = np.sum(delta_Z3, axis=0) / batch_X.shape[0]
    
    # 求隐藏层2的误差
    delta_A2 = delta_Z3.dot(W3.T)
    delta_Z2 = delta_A2 * dsigmoid(A2)
    
    # 利用隐藏层2的误差,求出三个偏导(即隐藏层1到隐藏层2的权值改变)    # 由于一次计算了多个样本,所以需要求平均
    delta_W2 = A1.T.dot(delta_Z2) / batch_X.shape[0]
    delta_B2 = np.sum(delta_Z2, axis=0) / batch_X.shape[0]
    
    # 求隐藏层1的误差
    delta_A1 = delta_Z2.dot(W2.T)
    delta_Z1 = delta_A1 * dsigmoid(A1)
    
    # 利用隐藏层1的误差,求出三个偏导(即输入层到隐藏层1的权值改变)    # 由于一次计算了多个样本,所以需要求平均
    delta_W1 = batch_X.T.dot(delta_Z1) / batch_X.shape[0]
    delta_B1 = np.sum(delta_Z1, axis=0) / batch_X.shape[0]
    
    # 更新权值
    W3 = W3 + lr *delta_W3
    W2 = W2 + lr *delta_W2
    W1 = W1 + lr *delta_W1
    
    # 改变偏置值
    b3 = b3 + lr * delta_B3
    b2 = b2 + lr * delta_B2
    b1 = b1 + lr * delta_B1

# 定义空list用于保存loss
loss = []
batch_X = []
batch_T = []
max_batch = X.shape[0] // batch_size
# 训练模型
for idx_epoch in range(epochs):
    
    for idx_batch in range(max_batch):
        # 更新权值
        batch_X = X[idx_batch*batch_size:(idx_batch+1)*batch_size, :]
        batch_T = T[idx_batch*batch_size:(idx_batch+1)*batch_size, :]
        update()
    # 每训练5000次计算一次loss值
    if idx_epoch % report == 0:
        # 隐藏层1输出
        A1 = sigmoid(np.dot(X,W1) + b1)
        # 隐藏层2输出
        A2 = sigmoid(np.dot(A1,W2) + b2)
        # 输出层输出
        A3 = sigmoid(np.dot(A2,W3) + b3)
        # 计算loss值
        print('A3:',A3)
        print('epochs:',idx_epoch,'loss:',np.mean(np.square(T - A3) / 2))
        # 保存loss值
        loss.append(np.mean(np.square(T - A3) / 2))

# 画图训练周期数与loss的关系图
plt.plot(range(0,epochs,report
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值