bzoj2005 [Noi2010]能量采集

http://www.elijahqi.win/archives/2747
Description
栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。
Input
仅包含一行,为两个整数n和m。

Output
仅包含一个整数,表示总共产生的能量损失。

Sample Input
【样例输入1】

5 4

【样例输入2】

3 4

Sample Output
【样例输出1】

36

【样例输出2】

20

对于100%的数据:1 ≤ n, m ≤ 100,000。
观察到因为这是一个每个点长宽都为单位1的矩形 所以可以知道一个点的答案就是
2gcd(i,j)1
所以答案显然是i=1ni=1m2gcd(i,j)1将这个-1提取出来 变成n*m
原始式子可以写成d=1ndd=1ndi=1nddj=1ndd1
于是直接利用技巧分块+预处理前缀和求解即可请各位大佬看一下莫比乌斯的常见的套路 还有狄利克雷卷积的一些知识qwq

#include<cstdio>
#include<algorithm>
#define N 110000
#define ll long long
#define rg register
using namespace std;
int mu[N],prime[N],tot,n,m;
bool not_prime[N];
int main(){
    //freopen("bzoj2005.in","r",stdin);
    scanf("%d%d",&n,&m);int mx=max(n,m);mu[1]=1;
    for (rg int i=2;i<=mx;++i){
        if (!not_prime[i]) mu[i]=-1,prime[++tot]=i;
        for (rg int j=1;prime[j]*i<=mx;++j){
            not_prime[i*prime[j]]=1;
            if (i%prime[j]==0){mu[i*prime[j]]=0;break;}else mu[i*prime[j]]=-mu[i];
        }
    }ll ans=0;int last=1;int mn=min(m,n);
    for (rg int i=1;i<=mx;++i) mu[i]+=mu[i-1];
    //for (rg int i=1;i<=mx;++i) printf("%d ",mu[i]);puts("");
    for (rg int i=1;i<=mn;++i){
        ll tmp=0;
        for (rg int j=1;j<=mn/i;j=last+1){
            last=min((m/i)/(m/(j*i)),(n/i)/(n/(j*i)));
            tmp+=(ll)(m/(j*i))*(n/(j*i))*(mu[last]-mu[j-1]);//printf("%lld\n",ans);
        }ans+=i*tmp<<1;
    }ans-=(ll)n*m;
    printf("%lld\n",ans);
    return 0;
}
发布了1259 篇原创文章 · 获赞 22 · 访问量 12万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览